off Responses in the Auditory Thalamus of the Guinea Pig

2002 ◽  
Vol 88 (5) ◽  
pp. 2377-2386 ◽  
Author(s):  
Jufang He

on and off auditory responses were examined in the medial geniculate body (MGB) of the guinea pig. Single- and multiunit recordings were carried out on 12 anesthetized animals, and noise-burst or pure-tone stimuli were applied to the ear contralateral to the recording hemisphere. One hundred and thirty-fiveoff or on-off neurons and 160 onneurons were studied, and the tuning curves of 21 on-off oroff neurons were examined from various nuclei of the MGB. The mean minimum threshold of the off responses (40.8 ± 20.0 dB SPL, mean ± SD; range: 0–80 dB SPL) was significantly higher than that of the on responses (28.5 ± 17.6 dB SPL, range: 0–60 dB SPL; n = 17, P < 0.001). Of 10 on-off neurons that showed identifiable tuning frequencies for both on andoff responses, 7 showed a higher off thanon best frequency (BF), 2 showed the same BF for bothon and off, and only 1 showed a slightly loweroff than on BF. Most off responses sampled from the borders of the ventral (MGv) and the rostromedial (MGrm) nuclei of the MGB showed single-peaked tuning curves, similar to those of the on responses in the MGv. The neurons located in the shell (MGs) and dorsal (MGd) nuclei of the MGB showed complicated—either multi-peaked or broad—tuning curves. Alloff responses showed long-duration-selectivity for acoustic stimuli: the mean half-maximum duration was 116.5 ± 114.8 ms ( n = 19, range: 27–411 ms). The latencies of 135off responses were studied in various divisions of the MGB. The ventral border region of MGv showed the shortest latency, followed by the dorsal border region of the MGv, the MGrm, and the caudomedial nucleus (MGcm) of the MGB. The posterior nucleus of the thalamus (Po), the MGd, and the MGs showed much longer mean latencies of >30 ms ( P < 0.05 compared with the border regions of the MGv, ANOVA), with Po showing the greatest mean latency of 60.3 ms and the greatest deviation of 25.5 ms). The latency of the offresponse (29.0 ± 14.0 ms, n = 135) was significantly greater than that of the on response (15.6 ± 9.6 ms, n = 160, P < 0.001). The present results provide valuable information about the threshold, frequency tuning characteristics, minimal response latency, and duration selectivity of off neurons in the auditory thalamus.

2002 ◽  
Vol 88 (4) ◽  
pp. 2152-2156 ◽  
Author(s):  
Jufang He ◽  
Bin Hu

The medial geniculate body (MGB) of the auditory thalamus comprises lemniscal and nonlemniscal neurons that project to the primary auditory cortex and limbic structures, respectively. Here we show that in anesthetized guinea pigs, MGB responses to a noise-burst stimulus exhibit distinct and synaptic pathway-specific firing patterns. The majority of nonlemniscal MGB cells exhibited bursting responses, whereas lemniscal neurons discharged mainly single or spike doublets. The burst firing is delayed in nonlemniscal neurons and exhibited several features that are characteristics of those mediated by low-threshold Ca2+ spikes. Such a synaptic pathway-specific allocation of bursting and single-spike firing patterns is consistent with the notion of parallel processing of auditory information in thalamocortical system.


2007 ◽  
Vol 98 (4) ◽  
pp. 1941-1952 ◽  
Author(s):  
Mark N. Wallace ◽  
Lucy A. Anderson ◽  
Alan R. Palmer

Accurate temporal coding of low-frequency tones by spikes that are locked to a particular phase of the sine wave (phase-locking), occurs among certain groups of neurons at various processing levels in the brain. Phase-locked responses have previously been studied in the inferior colliculus and neocortex of the guinea pig and we now describe the responses in the auditory thalamus. Recordings were made from 241 single units, 32 (13%) of which showed phase-locked responses. Units with phase-locked responses were mainly (82%) located in the ventral division of the medial geniculate body (MGB), and also the medial division (18%), but were not found in the dorsal or shell divisions. The upper limiting frequency of phase-locking varied greatly between units (60–1,100 Hz) and between anatomical divisions. The upper limit in the ventral division was 520 Hz and in the medial was 1,100 Hz. The range of steady-state delays calculated from phase plots also varied: ventral division, 8.6–14 ms (mean 11.1 ms; SD 1.56); medial division, 7.5–11 ms (mean 9.3 ms; SD 1.5). Taken together, these measurements are consistent with the medial division receiving a phase-locked input directly from the brain stem, without an obligatory relay in the inferior colliculus. Cells in both the ventral and medial divisions of the MGB showed a response that phase-locked to the fundamental frequency of a guinea pig purr and may be involved in analyzing communication calls.


2021 ◽  
Author(s):  
Yuanqing Zhang ◽  
Xiaohui Wang ◽  
Lin Zhu ◽  
Siyi Bai ◽  
Rui Li ◽  
...  

Cortical feedback has long been considered crucial for modulation of sensory processing. In the mammalian auditory system, studies have suggested that corticofugal feedback can have excitatory, inhibitory, or both effects on the response of subcortical neurons, leading to controversies regarding the role of corticothalamic influence. This has been further complicated by studies conducted under different brain states. In the current study, we used cryo-inactivation in the primary auditory cortex (A1) to examine the role of corticothalamic feedback on medial geniculate body (MGB) neurons in awake marmosets. The primary effects of A1 inactivation were a frequency-specific decrease in the auditory response of MGB neurons coupled with an increased spontaneous firing rate, which together resulted in a decrease in the signal-to-noise ratio. In addition, we report for the first-time that A1 robustly modulated the long-lasting sustained response of MGB neurons which changed the frequency tuning after A1 inactivation, e.g., neurons with sharp tuning increased tuning bandwidth whereas those with broad tuning decreased tuning bandwidth. Taken together, our results demonstrate that corticothalamic modulation in awake marmosets serves to enhance sensory processing in a way similar to center-surround models proposed in visual and somatosensory systems, a finding which supports common principles of corticothalamic processing across sensory systems.


2002 ◽  
Vol 88 (2) ◽  
pp. 1040-1050 ◽  
Author(s):  
Jufang He ◽  
Yan-Qin Yu ◽  
Ying Xiong ◽  
Tsutomu Hashikawa ◽  
Ying-Shing Chan

In the present study, we investigated the point-to-point modulatory effects from the auditory cortex to the thalamus in the guinea pig. Corticofugal modulation on thalamic neurons was studied by electrical activation of the auditory cortex. The modulation effect was sampled along the frontal or sagittal planes of the auditory thalamus, focusing on the ventral division (MGv) of the medial geniculate body (MGB). Electrical activation was targeted at the anterior and dorsocaudal auditory fields, to which the MGv projects and from which it assumptively receives reciprocal projections. Of the 101 MGv neurons examined by activation of the auditory cortex through passing pulse trains of 100–200 μA current into one after another of the three implanted electrodes (101 neurons × 3 stimulation sites = 303 cases), 208 cases showed a facilitatory effect, 85 showed no effect, and only 10 cases (7 neurons) showed an inhibitory effect. Among the cases of facilitation, 63 cases showed a facilitatory effect >100%, and 145 cases showed a facilitatory effect from 20–100%. The corticofugal modulatory effect on the MGv of the guinea pig showed a widespread, strong facilitatory effect and very little inhibitory effect. The MGv neurons showed the greatest facilitations to stimulation by the cortical sites, with the closest correspondence in BF. Six of seven neurons showed an elevation of the rate-frequency functions when the auditory cortex was activated. The comparative results of the corticofugal modulatory effects on the MGv of the guinea pig and the cat, together with anatomical findings, hint that the strong facilitatory effect is generated through the strong corticothalamic direct connection and that the weak inhibitory effect might be mainly generated via the interneurons of the MGv. The temporal firing pattern of neuronal response to auditory stimulus was also modulated by cortical stimulation. The mean first-spike latency increased significantly from 15.7 ± 5.3 ms with only noise-burst stimulus to 18.3 ± 4.9 ms ( n = 5, P < 0.01, paired t-test), while the auditory cortex was activated with a train of 10 pulses. Taking these results together with those of previous experiments conducted on the cat, we speculate that the relatively weaker inhibitory effect compared with that in the cat could be due to the smaller number of interneurons in the guinea pig MGB. The corticofugal modulation of the firing pattern of the thalamic neurons might enable single neurons to encode more auditory information using not only the firing rate but also the firing pattern.


2012 ◽  
Vol 108 (3) ◽  
pp. 935-942 ◽  
Author(s):  
Jie Tang ◽  
Weiguo Yang ◽  
Nobuo Suga

The central auditory system consists of the lemniscal and nonlemniscal pathways or systems, which are anatomically and physiologically different from each other. In the thalamus, the ventral division of the medial geniculate body (MGBv) belongs to the lemniscal system, whereas its medial (MGBm) and dorsal (MGBd) divisions belong to the nonlemniscal system. Lemniscal neurons are sharply frequency-tuned and provide highly frequency-specific information to the primary auditory cortex (AI), whereas nonlemniscal neurons are generally broadly frequency-tuned and project widely to cortical auditory areas including AI. These two systems are presumably different not only in auditory signal processing, but also in eliciting cortical plastic changes. Electric stimulation of narrowly frequency-tuned MGBv neurons evokes the shift of the frequency-tuning curves of AI neurons toward the tuning curves of the stimulated MGBv neurons (tone-specific plasticity). In contrast, electric stimulation of broadly frequency-tuned MGBm neurons augments the auditory responses of AI neurons and broadens their frequency-tuning curves (nonspecific plasticity). In our current studies, we found that electric stimulation of AI evoked tone-specific plastic changes of the MGBv neurons, whereas it degraded the frequency tuning of MGBm neurons by inhibiting their auditory responses. AI apparently modulates the lemniscal and nonlemniscal thalamic neurons in quite different ways. High MGBm activity presumably makes AI neurons less favorable for fine auditory signal processing, whereas high MGBv activity makes AI neurons more suitable for fine processing of specific auditory signals and reduces MGBm activity.


2011 ◽  
Vol 105 (6) ◽  
pp. 2647-2667 ◽  
Author(s):  
Edward L. Bartlett ◽  
Xiaoqin Wang

As the information bottleneck of nearly all auditory input that reaches the cortex, the auditory thalamus serves as the basis for establishing auditory cortical processing streams. The functional organization of the primary and nonprimary subdivisions of the auditory thalamus is not well characterized, particularly in awake primates. We have recorded from neurons in the auditory thalamus of awake marmoset monkeys and tested their responses to tones, band-pass noise, and temporally modulated stimuli. We analyzed the spectral and temporal response properties of recorded neurons and correlated those properties with their locations in the auditory thalamus, thereby forming the basis for parallel output channels. Three medial geniculate body (MGB) subdivisions were identified and studied physiologically and anatomically, although other medial subdivisions were also identified anatomically. Neurons in the ventral subdivision (MGV) were sharply tuned for frequency, preferred narrowband stimuli, and were able to synchronize to rapid temporal modulations. Anterodorsal subdivision (MGAD) neurons appeared well suited for temporal processing, responding similarly to tone or noise stimuli but able to synchronize to the highest modulation frequencies and with the highest temporal precision among MGB subdivisions. Posterodorsal subdivision (MGPD) neurons differed substantially from the other two subdivisions, with many neurons preferring broadband stimuli and signaling changes in modulation frequency with nonsynchronized changes in firing rate. Most neurons in all subdivisions responded to increases in tone sound level with nonmonotonic changes in firing rate. MGV and MGAD neurons exhibited responses consistent with provision of thalamocortical input to core regions, whereas MGPD neurons were consistent with provision of input to belt regions.


1967 ◽  
Vol 38 (3) ◽  
pp. 337-349 ◽  
Author(s):  
J. S. TINDAL ◽  
G. S. KNAGGS ◽  
A. TURVEY

SUMMARY The afferent path of the milk-ejection reflex has been studied in the brain of the lactating guinea-pig in light pentobarbitone anaesthesia. Square-wave pulses were applied between an indifferent electrode in the scalp and a monopolar electrode inserted stereotaxically in the brain. The brain was transected at the mid-cerebellar level to eliminate activation of the sympathetico-adrenal system, and milk-ejection pressure was monitored to detect release of neurohypophysial hormone(s). The afferent path of the reflex in the caudal midbrain was very compact and lay in the lateral tegmentum. More rostrally, milk-ejection responses were obtained from the tectum and mesencephalic central grey, but the major pathway remained in the lateral tegmentum and passed forward to lie ventromedial to the medial geniculate body, after which it divided into two components which we have termed the dorsal and ventral paths. The dorsal path traversed dorsomedially across the brainstem to reach the parafascicular thalamic nucleus, the extreme rostral central grey and the periventricular region at the meso-diencephalic boundary, and then continued forward to reach the pituitary stalk and the medial and dorsal hypothalamus. The ventral path traversed ventromedially to enter the subthalamus and then the lateral hypothalamus, in which it passed both to the rostral basal diencephalon and to the pituitary stalk. In the diencephalon, milk-ejection responses were obtained after stimulation of part of the ventral thalamus, the lateral, dorsal and anterior hypothalamic areas, the dorsomedial, ventromedial, arcuate, supraoptic and paraventricular nuclei, and the pituitary stalk. It is suggested from these findings that in the guinea-pig the suckling stimulus ascends by the spinothalamic system, and continues rostrally to relay with the medial and ventral thalamus, the dorsal longitudinal fasciculus and the medial forebrain bundle. Other ascending pathways in the medial lemniscus and mammillary peduncle may also be involved, but appear to be of only minor significance.


Sign in / Sign up

Export Citation Format

Share Document