The flexible recruitment of muscle synergies depends on the required force-generating capability

2014 ◽  
Vol 112 (2) ◽  
pp. 316-327 ◽  
Author(s):  
Shota Hagio ◽  
Motoki Kouzaki

To simplify redundant motor control, the central nervous system (CNS) may modularly organize and recruit groups of muscles as “muscle synergies.” However, smooth and efficient movements are expected to require not only low-dimensional organization, but also flexibility in the recruitment or combination of synergies, depending on force-generating capability of individual muscles. In this study, we examined how the CNS controls activations of muscle synergies as changing joint angles. Subjects performed multidirectional isometric force generations around right ankle and extracted the muscle synergies using nonnegative matrix factorization across various knee and hip joint angles. As a result, muscle synergies were selectively recruited with merging or decomposition as changing the joint angles. Moreover, the activation profiles, including activation levels and the direction indicating the peak, of muscle synergies across force directions depended on the joint angles. Therefore, we suggested that the CNS selects appropriate muscle synergies and controls their activation patterns based on the force-generating capability of muscles with merging or decomposing descending neural inputs.

2006 ◽  
Vol 95 (4) ◽  
pp. 2199-2212 ◽  
Author(s):  
Matthew C. Tresch ◽  
Vincent C. K. Cheung ◽  
Andrea d'Avella

Several recent studies have used matrix factorization algorithms to assess the hypothesis that behaviors might be produced through the combination of a small number of muscle synergies. Although generally agreeing in their basic conclusions, these studies have used a range of different algorithms, making their interpretation and integration difficult. We therefore compared the performance of these different algorithms on both simulated and experimental data sets. We focused on the ability of these algorithms to identify the set of synergies underlying a data set. All data sets consisted of nonnegative values, reflecting the nonnegative data of muscle activation patterns. We found that the performance of principal component analysis (PCA) was generally lower than that of the other algorithms in identifying muscle synergies. Factor analysis (FA) with varimax rotation was better than PCA, and was generally at the same levels as independent component analysis (ICA) and nonnegative matrix factorization (NMF). ICA performed very well on data sets corrupted by constant variance Gaussian noise, but was impaired on data sets with signal-dependent noise and when synergy activation coefficients were correlated. Nonnegative matrix factorization (NMF) performed similarly to ICA and FA on data sets with signal-dependent noise and was generally robust across data sets. The best algorithms were ICA applied to the subspace defined by PCA (ICAPCA) and a version of probabilistic ICA with nonnegativity constraints (pICA). We also evaluated some commonly used criteria to identify the number of synergies underlying a data set, finding that only likelihood ratios based on factor analysis identified the correct number of synergies for data sets with signal-dependent noise in some cases. We then proposed an ad hoc procedure, finding that it was able to identify the correct number in a larger number of cases. Finally, we applied these methods to an experimentally obtained data set. The best performing algorithms (FA, ICA, NMF, ICAPCA, pICA) identified synergies very similar to one another. Based on these results, we discuss guidelines for using factorization algorithms to analyze muscle activation patterns. More generally, the ability of several algorithms to identify the correct muscle synergies and activation coefficients in simulated data, combined with their consistency when applied to physiological data sets, suggests that the muscle synergies found by a particular algorithm are not an artifact of that algorithm, but reflect basic aspects of the organization of muscle activation patterns underlying behaviors.


2016 ◽  
Vol 2016 ◽  
pp. 1-14
Author(s):  
Bingfeng Li ◽  
Yandong Tang ◽  
Zhi Han

As a linear dimensionality reduction method, nonnegative matrix factorization (NMF) has been widely used in many fields, such as machine learning and data mining. However, there are still two major drawbacks for NMF: (a) NMF can only perform semantic factorization in Euclidean space, and it fails to discover the intrinsic geometrical structure of high-dimensional data distribution. (b) NMF suffers from noisy data, which are commonly encountered in real-world applications. To address these issues, in this paper, we present a new robust structure preserving nonnegative matrix factorization (RSPNMF) framework. In RSPNMF, a local affinity graph and a distant repulsion graph are constructed to encode the geometrical information, and noisy data influence is alleviated by characterizing the data reconstruction term of NMF withl2,1-norm instead ofl2-norm. With incorporation of the local and distant structure preservation regularization term into the robust NMF framework, our algorithm can discover a low-dimensional embedding subspace with the nature of structure preservation. RSPNMF is formulated as an optimization problem and solved by an effective iterative multiplicative update algorithm. Experimental results on some facial image datasets clustering show significant performance improvement of RSPNMF in comparison with the state-of-the-art algorithms.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mumtaz Hussain Soomro ◽  
Silvia Conforto ◽  
Gaetano Giunta ◽  
Simone Ranaldi ◽  
Cristiano De Marchis

The main goal of this work was to assess the performance of different initializations of matrix factorization algorithms for an accurate identification of muscle synergies. Currently, nonnegative matrix factorization (NNMF) is the most commonly used method to identify muscle synergies. However, it has been shown that NNMF performance might be affected by different kinds of initialization. The present study aims at optimizing the traditional NNMF initialization for data with partial or complete temporal dependencies. For this purpose, three different initializations are used: random, SVD-based, and sparse. NNMF was used to identify muscle synergies from simulated data as well as from experimental surface EMG signals. Simulated data were generated from synthetic independent and dependent synergy vectors (i.e., shared muscle components), whose activation coefficients were corrupted by simulating controlled degrees of correlation. Similarly, EMG data were artificially modified, making the extracted activation coefficients temporally dependent. By measuring the quality of identification of the original synergies underlying the data, it was possible to compare the performance of different initialization techniques. Simulation results demonstrate that sparse initialization performs significantly better than all other kinds of initialization in reconstructing muscle synergies, regardless of the correlation level in the data.


Author(s):  
Minchao Ye ◽  
Wenbin Zheng ◽  
Huijuan Lu ◽  
Xianting Zeng ◽  
Yuntao Qian

Hyperspectral image (HSI) classification draws a lot of attentions in the past decades. The classical problem of HSI classification mainly focuses on a single HSI scene. In recent years, cross-scene classification becomes a new problem, which deals with the classification models that can be applied across different but highly related HSI scenes sharing common land cover classes. This paper presents a cross-scene classification framework combining spectral–spatial feature extraction and manifold-constrained feature subspace learning. In this framework, spectral–spatial feature extraction is completed using three-dimensional (3D) wavelet transform while manifold-constrained feature subspace learning is implemented via multitask nonnegative matrix factorization (MTNMF) with manifold regularization. In 3D wavelet transform, we drop some coefficients corresponding to high frequency in order to avoid data noise. In feature subspace learning, a common dictionary (basis) matrix is shared by different scenes during the nonnegative matrix factorization, indicating that the highly related scenes should share than same low-dimensional feature subspace. Furthermore, manifold regularization is applied to force the consistency across the scenes, i.e. all pixels representing the same land cover class should be similar in the low-dimensional feature subspace, though they may be drawn from different scenes. The experimental results show that the proposed method performs well in cross-scene HSI datasets.


2018 ◽  
Author(s):  
Alessandro Santuz ◽  
Turgay Akay ◽  
William P. Mayer ◽  
Tyler L. Wells ◽  
Arno Schroll ◽  
...  

AbstractFor exploiting terrestrial and aquatic locomotion, vertebrates must build their locomotor patterns based on an enormous amount of variables. The great number of muscles and joints, together with the constant need for sensory feedback information (e.g. proprioception), make the task of creating and controlling movement a problem with overabundant degrees of freedom. It is widely accepted that the central nervous system might simplify the creation and control of movement. This could happen through the generation of activation patterns, which are common to many different muscles, rather than specific to individual muscles. These activation patterns, called muscle synergies, can be extracted from electromyographic data and describe the modular organization of movement. We extracted muscle synergies from the hindlimb muscle activities of wild type and genetically modified mice, in which sensory feedback from muscle spindles is eliminated. Muscle spindle-deficient mice underwent a modification of the temporal structure (motor primitives) of muscle synergies that resulted in diminished functionality during walking. In addition, both the temporal and spatial components (motor modules) of muscle synergies were severely affected when external perturbations were introduced of when animals were immersed in water. These findings show that group Ia/II sensory feedback from muscle spindles regulates motor function in normal and perturbed walking. Moreover, when group Ib Golgi tendon organ feedback is lacking due to the reduction of gravitational load in conditions of enhanced buoyancy, the modular organization of swimming is almost completely compromised.Significance statementLocomotion on land and in water requires the coordination of a great number of muscle activations and joint movements. Moreover, constant feedback about the position of own body parts in relation to the surrounding environment and the body itself (proprioception) is required to maintain stability and avoid failure. The theory of muscle synergies states that the central nervous system might control muscles in orchestrated groups (synergies) rather than individually. We used this concept on genetically modified mice, lacking one of the two classes of proprioceptors. Our results provide evidence that proprioceptive feedback is required by the central nervous system to accurately tune the modular organization of locomotion.


Sign in / Sign up

Export Citation Format

Share Document