scholarly journals Hippocampus and subregions of the dorsal striatum respond differently to a behavioral strategy change on a spatial navigation task

2015 ◽  
Vol 114 (3) ◽  
pp. 1399-1416 ◽  
Author(s):  
Paul S. Regier ◽  
Seiichiro Amemiya ◽  
A. David Redish

Goal-directed and habit-based behaviors are driven by multiple but dissociable decision making systems involving several different brain areas, including the hippocampus and dorsal striatum. On repetitive tasks, behavior transitions from goal directed to habit based with experience. Hippocampus has been implicated in initial learning and dorsal striatum in automating behavior, but recent studies suggest that subregions within the dorsal striatum have distinct roles in mediating habit-based and goal-directed behavior. We compared neural activity in the CA1 region of hippocampus with anterior dorsolateral and posterior dorsomedial striatum in rats on a spatial choice task, in which subjects experienced reward delivery changes that forced them to adjust their behavioral strategy. Our results confirm the importance of the hippocampus in evaluating predictive steps during goal-directed behavior, while separate circuits in the basal ganglia integrated relevant information during automation of actions and recognized when new behaviors were needed to continue obtaining rewards.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meizhu Huang ◽  
Dapeng Li ◽  
Xinyu Cheng ◽  
Qing Pei ◽  
Zhiyong Xie ◽  
...  

AbstractAppetitive locomotion is essential for animals to approach rewards, such as food and prey. The neuronal circuitry controlling appetitive locomotion is unclear. In a goal-directed behavior—predatory hunting, we show an excitatory brain circuit from the superior colliculus (SC) to the substantia nigra pars compacta (SNc) to enhance appetitive locomotion in mice. This tectonigral pathway transmits locomotion-speed signals to dopamine neurons and triggers dopamine release in the dorsal striatum. Synaptic inactivation of this pathway impairs appetitive locomotion but not defensive locomotion. Conversely, activation of this pathway increases the speed and frequency of approach during predatory hunting, an effect that depends on the activities of SNc dopamine neurons. Together, these data reveal that the SC regulates locomotion-speed signals to SNc dopamine neurons to enhance appetitive locomotion in mice.


2018 ◽  
Vol 115 (22) ◽  
pp. E5233-E5242 ◽  
Author(s):  
Amanda R. Arulpragasam ◽  
Jessica A. Cooper ◽  
Makiah R. Nuutinen ◽  
Michael T. Treadway

We are presented with choices each day about how to invest our effort to achieve our goals. Critically, these decisions must frequently be made under conditions of incomplete information, where either the effort required or possible reward to be gained is uncertain. Such choices therefore require the development of potential value estimates to guide effortful goal-directed behavior. To date, however, the neural mechanisms for this expectation process are unknown. Here, we used computational fMRI during an effort-based decision-making task where trial-wise information about effort costs and reward magnitudes was presented separately over time, thereby allowing us to model distinct effort/reward computations as choice-relevant information unfolded. We found that ventromedial prefrontal cortex (vmPFC) encoded expected subjective value. Further, activity in dorsal anterior cingulate (dACC) and anterior insula (aI) reflected both effort discounting as well as a subjective value prediction error signal derived from trial history. While prior studies have identified these regions as being involved in effort-based decision making, these data demonstrate their specific role in the formation and maintenance of subjective value estimates as relevant information becomes available.


2011 ◽  
Vol 23 (5) ◽  
pp. 1218-1229 ◽  
Author(s):  
Sanne de Wit ◽  
Roger A. Barker ◽  
Anthony D. Dickinson ◽  
Roshan Cools

This study presents the first direct investigation of the hypothesis that dopamine depletion of the dorsal striatum in mild Parkinson disease leads to impaired stimulus–response habit formation, thereby rendering behavior slow and effortful. However, using an instrumental conflict task, we show that patients are able to rely on direct stimulus–response associations when a goal-directed strategy causes response conflict, suggesting that habit formation is not impaired. If anything our results suggest a disease severity–dependent deficit in goal-directed behavior. These results are discussed in the context of Parkinson disease and the neurobiology of habitual and goal-directed behavior.


Neuron ◽  
2016 ◽  
Vol 92 (1) ◽  
pp. 202-213 ◽  
Author(s):  
Giovanni Barbera ◽  
Bo Liang ◽  
Lifeng Zhang ◽  
Charles R. Gerfen ◽  
Eugenio Culurciello ◽  
...  

2006 ◽  
Vol 120 (1) ◽  
pp. 196-200 ◽  
Author(s):  
Siobhan Robinson ◽  
Bethany N. Sotak ◽  
Matthew J. During ◽  
Richard D. Palmiter

2018 ◽  
Author(s):  
Tiffany Bell ◽  
Angela Langdon ◽  
Michael Lindner ◽  
William Lloyd ◽  
Anastasia Christakou

ABSTRACTCognitive flexibility is crucial for adaptation and is disrupted in neuropsychiatric disorders and psychopathology. Human studies of flexibility using reversal learning tasks typically contrast error trials before and after reversal, which provides little information about the mechanisms that support learning and expressing a new response. However, animal studies suggest a specific role in this latter process for the connections between the dorsal striatum and the centromedian parafascicular (CM-Pf) thalamus, a system which may recruit the striatal cholinergic interneurons, but which is not well understood in humans. This study investigated the role of this system in human probabilistic reversal learning, specifically with respect to learning a new response strategy, contrasting its function to that of the better understood orbitoftontal-striatal systems. Using psychophysiological interaction (PPI) analysis of functional magnetic resonance imaging (fMRI) data we show that connectivity between the striatum and both the lateral orbitofrontal cortex (lOFC) and CM-Pf pathways increased during reversal, but not initial learning. However, while the strength of lOFC-striatal connectivity was associated with the speed of the reversal, the strength of CM-Pf-striatal connectivity was associated specifically with the quality of the reversal (reduced regressive errors). These findings expand our understanding of flexibility mechanisms in the human brain, bridging the gap with animal studies of this system.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xue Li ◽  
Jing-Wang Zhao ◽  
Qian Ding ◽  
Cheng Wu ◽  
Wan-Qi Li ◽  
...  

Region-specific plasticity in the striatal circuit plays an important role in the development and long-term maintenance of skills and sequential movement procedures. Studies investigating the molecular substrates that contribute to the plasticity changes during motor skill processes have documented a transition in expression from the dorsomedial striatum (DMS) to the dorsolateral striatum (DLS); however, few studies have explored the expression pattern of molecular substrates in the dorsal striatum during progression of instrumental learning. To address this issue, the activity-regulated cytoskeleton-associated protein (Arc) expressions in the subregional dorsal striatum were analyzed during the early and late learning phases of the 10-day sucrose self-administration process. We found that Arc protein is primarily detected in the DMS only in the initial learning stage; however, it is expressed in the DLS during both early and late learning stages. Moreover, Arc expression in the DMS correlated with the number of rewards received later in the training. These data indicated that the Arc expression in subregions of the dorsal striatum shows region-specific transfer and that Arc expression in the DMS contributes to obtaining reward in later learning stage during the process of instrumental learning.


2000 ◽  
Vol 83 (4) ◽  
pp. 1864-1876 ◽  
Author(s):  
Léon Tremblay ◽  
Wolfram Schultz

The orbitofrontal cortex appears to be involved in the control of voluntary, goal-directed behavior by motivational outcomes. This study investigated how orbitofrontal neurons process information about rewards in a task that depends on intact orbitofrontal functions. In a delayed go-nogo task, animals executed or withheld a reaching movement and obtained liquid or a conditioned sound as reinforcement. An initial instruction picture indicated the behavioral reaction to be performed (movement vs. nonmovement) and the reinforcer to be obtained (liquid vs. sound) after a subsequent trigger stimulus. We found task-related activations in 188 of 505 neurons in rostral orbitofrontal area 13, entire area 11, and lateral area 14. The principal task-related activations consisted of responses to instructions, activations preceding reinforcers, or responses to reinforcers. Most activations reflected the reinforcing event rather than other task components. Instruction responses occurred either in liquid- or sound-reinforced trials but rarely distinguished between movement and nonmovement reactions. These instruction responses reflected the predicted motivational outcome rather than the behavioral reaction necessary for obtaining that outcome. Activations preceding the reinforcer began slowly and terminated immediately after the reinforcer, even when the reinforcer occurred earlier or later than usually. These activations preceded usually the liquid reward but rarely the conditioned auditory reinforcer. The activations also preceded expected drops of liquid delivered outside the task, suggesting a primary appetitive rather than a task-reinforcing relationship that apparently was related to the expectation of reward. Responses after the reinforcer occurred in liquid- but rarely in sound-reinforced trials. Reward-preceding activations and reward responses were unrelated temporally to licking movements. Several neurons showed reward responses outside the task but instruction responses during the task, indicating a response transfer from primary reward to the reward-predicting instruction, possibly reflecting the temporal unpredictability of reward. In conclusion, orbitofrontal neurons report stimuli associated with reinforcers are concerned with the expectation of reward and detect reward delivery at trial end. These activities may contribute to the processing of reward information for the motivational control of goal-directed behavior.


2021 ◽  
Author(s):  
Jaclyn Essig ◽  
Gidon Felsen

To survive in unpredictable environments, animals must continuously evaluate their surroundings for behavioral targets, such as food and shelter, and direct their movements to acquire those targets. Although the ability to accurately select and acquire spatial targets depends on a shared network of brain regions, how these processes are linked by neural circuits remains unknown. The superior colliculus (SC) mediates the selection of spatial targets and remains active during orienting movements to acquire targets, which suggests the underexamined possibility that common SC circuits underie both selection and acquisition processes. Here, we test the hypothesis that SC functional circuitry couples target selection and acquisition using a default motor plan generated by selection-related neuronal activity. Single-unit recordings from intermediate and deep layer SC neurons in male mice performing a spatial choice task demonstrated that choice-predictive neurons, including optogenetically identified GABAergic SC neurons whose activity was causally related to target selection, exhibit increased activity during movement to the target. By strategically recording from both rostral and caudal SC neurons, we also revealed an overall caudal-to-rostral shift in activity as targets were acquired. Finally, we used an attractor model to examine how target selection activity in the SC could generate a rostral shift in activity during target acquisition using only intrinsic SC circuitry. Overall, our results suggest a functional coupling between SC circuits that underlie target selection and acquisition, elucidating a key mechanism for goal-directed behavior.


Sign in / Sign up

Export Citation Format

Share Document