molecular substrates
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 23)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
GOFARANA WILAR ◽  
KOHJI FUKUNAGA

Objective: Nicotine is an active compound in tobacco and has a rewarding effect in the central nervous system (CNS), which may lead to dependence. Although nicotine dependence is elucidated by brain mechanisms, synaptic molecular substrates underlying the dependence remain unclear. We hypothesized that reward signaling is mediated by dopamine and glutamate receptors, in where calcium/calmodulin-dependent kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) may mediate the synaptic signaling of dependence. Methods: To investigate the roles of both CaMKII and ERK on nicotine dependence were assessed by conditioned place preference (CPP) methods followed by dissection. One day after conditioning, preference scores were measured to evaluate nicotine dependence. Mice were sacrificed and their striatum were dissected out for immunoblotting analyses of CaMKII and ERK phosphorylation. Results: Nicotine-induced conditioned place preference as a symptom of nicotine dependence. CaMKII and ERK phosphorylation in striatum significantly increased along with the development of nicotine dependence. Conclusion: We should next apply pharmacological strategies to manipulate CaMKII and ERK signaling. In particular, disruption of reconsolidation by disrupting CaMKII and ERK signaling may propose an attractive therapeutic approach to inhibit nicotine dependence.


Author(s):  
Michael G. Christiansen ◽  
Matej ◽  
Vizovišek ◽  
Simone Schuerle

Enzymes are appealing diagnostic targets because of their centrality in human health and disease. Continuous efforts spanning several decades have yielded methods for magnetically detecting the interactions of enzymes with exogenous molecular substrates. Nevertheless, measuring enzymatic activity in vivo remains challenging due to background noise, insufficient selectivity, and overlapping enzymatic functions. Magnetic micro- and nanoagents are poised to help overcome these issues by offering possible advantages such as site-selective sampling, modular architectures, new forms of magnetic detection, and favorable biocompatibility. Here, we review relevant control and detection strategies and consider examples of magnetic enzyme detection demonstrated with micro- or nanorobotic systems. Most cases have focused on proteolytic enzymes, leaving ample opportunity to expand to other classes of enzymes. Enzyme-responsive magnetic micro- and nanoagents hold promise for lowering barriers of translation and enabling preemptive, point-of-care medical applications. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Zhang ◽  
Yuechao Zhang ◽  
Rui Liu ◽  
Ruining Cai ◽  
Fanghua Liu ◽  
...  

Resolving metabolisms of deep-sea microorganisms is crucial for understanding ocean energy cycling. Here, a strictly anaerobic, Gram-negative strain NS-1 was isolated from the deep-sea cold seep in the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain NS-1 was most closely related to the type strain Halocella cellulosilytica DSM 7362T (with 92.52% similarity). A combination of phylogenetic, genomic, and physiological traits with strain NS-1, was proposed to be representative of a novel genus in the family Halanaerobiaceae, for which Iocasia fonsfrigidae NS-1 was named. It is noteworthy that I. fonsfrigidae NS-1 could metabolize multiple carbohydrates including xylan, alginate, starch, and lignin, and thereby produce diverse fermentation products such as hydrogen, lactate, butyrate, and ethanol. The expressions of the key genes responsible for carbohydrate degradation as well as the production of the above small molecular substrates when strain NS-1 cultured under different conditions, were further analyzed by transcriptomic methods. We thus predicted that part of the ecological role of Iocasia sp. is likely in the fermentation of products from the degradation of diverse carbohydrates to produce hydrogen as well as other small molecules, which are in turn utilized by other members of cold seep microbes.


2021 ◽  
pp. 339244
Author(s):  
Sakthivel Kumaravel ◽  
Sheng-En Jian ◽  
Sheng-Tung Huang ◽  
Chih-Hung Huang ◽  
Wei-Zhe Hong

2021 ◽  
Author(s):  
Simón Poblete ◽  
Anže Božič ◽  
Matej Kanduč ◽  
Rudolf Podgornik ◽  
Horacio V. Guzman

AbstractRNA is a functionally rich molecule with multilevel, hierarchical structures whose role in the adsorption to molecular substrates is only beginning to be elucidated. Here, we introduce a multiscale simulation approach that combines a tractable coarse-grained RNA structural model with an interaction potential of a structureless flat adsorbing substrate. Within this approach, we study the specific role of stem-hairpin and multibranch RNA secondary structure motifs on its adsorption phenomenology. Our findings identify a dual regime of adsorption for short RNA fragments with and without secondary structure, and underline the adsorption efficiency in both cases as a function of the surface interaction strength. The observed behavior results from an interplay between the number of contacts formed at the surface and the conformational entropy of the RNA molecule. The adsorption phenomenology of RNA seems to persist also for much longer RNAs as qualitatively observed by comparing the trends of our simulations with a theoretical approach based on an ideal semiflexible polymer chain.


2021 ◽  
Author(s):  
Paul M Airs ◽  
Kathy Vaccaro ◽  
Kendra J Gallo ◽  
Nathalie Dinguirard ◽  
Zachary W Heimark ◽  
...  

Lymphatic filariasis (LF) is a chronic debilitating neglected tropical disease (NTD) caused by mosquito-transmitted nematodes that afflicts over 60 million people. Control of LF relies on routine mass drug administration with antiparasitics that clear circulating larval parasites but are ineffective against adults. The development of effective adulticides is hampered by a poor understanding of the processes and tissues driving parasite survival in the host. The adult filariae head region contains essential tissues that control parasite feeding, sensory, secretory, and reproductive behaviors, which express promising molecular substrates for the development of antifilarial drugs, vaccines, and diagnostics. We have adapted spatial transcriptomic approaches to map gene expression patterns across these prioritized but historically intractable head tissues. Spatial and tissue-resolved data reveal distinct biases in the origins of known drug targets and secreted antigens. These data were used to identify potential new drug and vaccine targets, including putative hidden antigens expressed in the alimentary canal, and to spatially associate receptor subunits belonging to druggable families. Spatial transcriptomic approaches provide a powerful resource to aid gene function inference and seed antiparasitic discovery pipelines across helminths of relevance to human and animal health.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alberto J. López ◽  
Amy R. Johnson ◽  
Tanner J. Euston ◽  
Rashaun Wilson ◽  
Suzanne O. Nolan ◽  
...  

AbstractSubstance use disorder (SUD) is a chronic neuropsychiatric condition characterized by long-lasting alterations in the neural circuitry regulating reward and motivation. Substantial work has focused on characterizing the molecular substrates that underlie these persistent changes in neural function and behavior. However, this work has overwhelmingly focused on male subjects, despite mounting clinical and preclinical evidence that females demonstrate dissimilar progression to SUD and responsivity to stimulant drugs of abuse, such as cocaine. Here, we show that sex is a critical biological variable that defines drug-induced plasticity in the nucleus accumbens (NAc). Using quantitative mass spectrometry, we assessed the protein expression patterns induced by cocaine self-administration and demonstrated unique molecular profiles between males and females. We show that 1. Cocaine self-administration induces non-overlapping protein expression patterns in significantly regulated proteins in males and females and 2. Critically, cocaine-induced protein regulation differentially interacts with sex to eliminate basal sexual dimorphisms in the proteome. Finally, eliminating these baseline differences in the proteome is concomitant with the elimination of sex differences in behavior for non-drug rewards. Together, these data suggest that cocaine administration is capable of rewriting basal proteomic function and reward-associated behaviors.


Author(s):  
Devasahayam Arokia Balaya Rex ◽  
Sumaithangi Thattai Arun Kumar ◽  
Akhila Balakrishna Rai ◽  
Chinmaya Narayana Kotimoole ◽  
Prashant Kumar Modi ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Xue Li ◽  
Jing-Wang Zhao ◽  
Qian Ding ◽  
Cheng Wu ◽  
Wan-Qi Li ◽  
...  

Region-specific plasticity in the striatal circuit plays an important role in the development and long-term maintenance of skills and sequential movement procedures. Studies investigating the molecular substrates that contribute to the plasticity changes during motor skill processes have documented a transition in expression from the dorsomedial striatum (DMS) to the dorsolateral striatum (DLS); however, few studies have explored the expression pattern of molecular substrates in the dorsal striatum during progression of instrumental learning. To address this issue, the activity-regulated cytoskeleton-associated protein (Arc) expressions in the subregional dorsal striatum were analyzed during the early and late learning phases of the 10-day sucrose self-administration process. We found that Arc protein is primarily detected in the DMS only in the initial learning stage; however, it is expressed in the DLS during both early and late learning stages. Moreover, Arc expression in the DMS correlated with the number of rewards received later in the training. These data indicated that the Arc expression in subregions of the dorsal striatum shows region-specific transfer and that Arc expression in the DMS contributes to obtaining reward in later learning stage during the process of instrumental learning.


2021 ◽  
Vol 478 (9) ◽  
pp. 1663-1688
Author(s):  
Yonghua Li ◽  
Huan Jin ◽  
Yibing Chen ◽  
Ting Huang ◽  
Yanjun Mi ◽  
...  

Cancer cachexia often occurs in malignant tumors and is a multifactorial and complex symptom characterized by wasting of skeletal muscle and adipose tissue, resulting in weight loss, poor life quality and shorter survival. The pathogenic mechanism of cancer cachexia is complex, involving a variety of molecular substrates and signal pathways. Advancements in understanding the molecular mechanisms of cancer cachexia have provided a platform for the development of new targeted therapies. Although recent outcomes of early-phase trials have showed that several drugs presented an ideal curative effect, monotherapy cannot be entirely satisfactory in the treatment of cachexia-associated symptoms due to its complex and multifactorial pathogenesis. Therefore, the lack of definitive therapeutic strategies for cancer cachexia emphasizes the need to develop a better understanding of the underlying mechanisms. Increasing evidences show that the progression of cachexia is associated with metabolic alternations, which mainly include excessive energy expenditure, increased proteolysis and mitochondrial dysfunction. In this review, we provided an overview of the key mechanisms of cancer cachexia, with a major focus on muscle atrophy, adipose tissue wasting, anorexia and fatigue and updated the latest progress of pharmacological management of cancer cachexia, thereby further advancing the interventions that can counteract cancer cachexia.


Sign in / Sign up

Export Citation Format

Share Document