response transfer
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
pp. 107754632098131
Author(s):  
Jamil Renno ◽  
Sadok Sassi ◽  
Wael I Alnahhal

The prediction of the response of waveguides to time-harmonic base excitations has many applications in mechanical, aerospace and civil engineering. The response to base excitations can be obtained analytically for simple waveguides only. For general waveguides, the response to time-harmonic base excitations can be obtained using the finite element method. In this study, we present a wave and finite element approach to calculate the response of waveguides to time-harmonic base excitations. The wave and finite element method is used to model free wave propagation in the waveguide, and these characteristics are then used to find the amplitude of excited waves in the waveguide. Reflection matrices at the boundaries of the waveguide are then used to find the amplitude of the travelling waves in the waveguide and subsequently the response of the waveguide. This includes the displacement and stress frequency response transfer functions. Numerical examples are presented to demonstrate the approach and to discuss the numerical efficiency of the proposed method.


Author(s):  
Luca A. Ludovico ◽  
Giorgio Presti ◽  
Alessandro Rizzi

AbstractThis paper explores the behavior of an algorithm called Audio Dynamics Automatic Equalization (ADAE). This algorithm has been inspired by research carried out in the context of image restoration: it is the adaptation of a contrast and color unsupervised equalizer for images, called Automatic Color Equalization (ACE), into the audio domain. Beside testing if the domain shift from image to audio processing can bring some interesting result, this work also investigates if ADAE behaves like already-known technologies for audio manipulation and restoration. To this end, after a description of the original and the derived algorithms, quantitative test are carried out using typical analyses from the Sound and Music Computing literature, such as frequency response, transfer function, and harmonic distortion. Finally, the paper discusses how the algorithm introduces dynamic range adjustments and non-linear distortions, thus behaving like a dynamics processor, a harmonic exciter, and a waveshaper.


2014 ◽  
Vol 8 ◽  
Author(s):  
Jason Ivanoff ◽  
Ryan Blagdon ◽  
Stefanie Feener ◽  
Melanie McNeil ◽  
Paul H. Muir

2014 ◽  
Vol 4 (2) ◽  
Author(s):  
Nicolae Bîrlea

AbstractIn this paper we present how the main parameters of an optimal velocity model, the velocity adaptation time, τ, and the desired time gap between consecutive vehicles (time headway), T, control the structure of vehicular traffic flow. We show that the ratio between the desired time gap and the velocity adaptation time, T /τ, establishes the pattern formation in congested traffic flow. This ratio controls both the collective behavior and the individual response of vehicles in traffic. We also introduced a response (transfer) function, which shows how perturbation is transmitted between adjacent vehicles and permits the study of collective stability of traffic flow.


2005 ◽  
Vol 83 (2) ◽  
pp. 152-160 ◽  
Author(s):  
Fujian Qu ◽  
Fidel Zarubin ◽  
Brian Wollenzier ◽  
Vladimir P Nikolski ◽  
Igor R Efimov

Implantable cardioverter defibrillator studies have established the superiority of biphasic waveforms over monophasic waveforms. However, external defibrillator studies of biphasic waveforms are not as widespread. Our objective was to compare the defibrillation efficacy of clinically used biphasic waveforms, i.e., truncated exponential, rectilinear, and quasi-sinusoidal (Gurvich) waveforms in a fibrillating heart model. Langendorff-perfused rabbit hearts (n = 10) were stained with a voltage-sensitive fluorescent dye, Di-4-ANEPPS. Transmembrane action potentials were optically mapped from the anterior epicardium. We found that the Gurvich waveform was significantly superior (p < 0.05) to the rectilinear and truncated exponential waveforms. The defibrillation thresholds (mean ± SE) were as follows: Gurvich, 0.25 ± 0.01 J; rectilinear-1, 0.34 ± 0.01 J; rectilinear-2, 0.33 ± 0.01 J; and truncated exponential, 0.32 ± 0.02 J. Using optically recorded transmembrane responses, we determined the shock-response transfer function, which allowed us to predict the cellular response to waveforms at high accuracy. The passive parallel resistor-capacitor model (RC-model) predicted polarization superiority of the Gurvich waveform in the myocardium with a membrane time constant (τm) of less than 2 ms. The finding of a lower defibrillation threshold with the Gurvich waveform in an in vitro model of external defibrillation suggests that the Gurvich waveform may be important for future external defibrillator designs.Key words: defibrillation, optical mapping, biphasic waveform, Gurvich waveform.


2003 ◽  
Vol 86 (3) ◽  
pp. 157-178 ◽  
Author(s):  
Robin J. Rowbury

A major aim in many areas of microbiology is to ensure sterility, and even where this is impossible, to reduce the number of viable organisms occurring in particular environments to an absolute minimum. This applies in the aquatic environment, where e.g. water treatment must ensure as complete absence of viable microbes as possible. It is also crucial in food processing and production; many food constituents contain appreciable numbers of viable organisms, even potential pathogens, and the number must be greatly reduced and in many situations, the presence of viable organisms totally abolished. Cleaning of food production components and surfaces must also kill associated microbes. In domestic, hospital and commercial situations, similar disinfection is critical. Ultimately, the aim is to ensure, if possible, sterility, with the assurance that microbial problems cannot occur if organisms are absent. Additionally, however, it has been implicitly assumed that killed organisms and even killed cultures cannot (except in minor and trivial ways) influence the behaviour of living organisms that later enter the environment. The work reviewed here challenges that view and in fact disproves it. The findings described show that killed enterobacterial cultures, which prior to killing had phenotypically gained the ability to resist potentially lethal stresses, can pass on such ability to living organisms that later enter their environment i.e. that such killed cultures can convey a baleful legacy to living ones. This phenomenon is so widespread that it is clear that it has significance for enterobacterial survival in natural waters, in foods and in food production, in the domestic, commercial and hospital situation, and in the animal and human body. In fact, in this last area, the likely effect of killed cultures appears to be of appreciable public health importance. Here, the ability of appropriate killed cultures to transfer tolerance to acidity, alkalinity and thermal stress is described, as well as their ability to pass on sensitisation to acid and alkali. Other work reviewed suggests that killed cultures can almost certainly transfer the ability to tolerate hydrogen peroxide, ultraviolet irradiation and metal ions. The serious implications of this phenomenon are further emphasised by the fact that numerous killing methods produce cultures effective in tolerance response transfer. All the evidence suggests that it is extracellular components (extracellular sensing components, ESCs, and extracellular induction components, EICs), in the killed cultures which are involved in stress response transfer, and that the actual stress response induction process depends on interaction of living organisms with EICs from the killed cultures. It is of note that ESCs and EICs survive in killed cultures because of their extreme resistance to irreversible inactivation by lethal levels of stressing agents and conditions. This is in contrast to the fact that EC activation, namely the conversion of ESC to EIC occurs on exposure to very low levels of stressors. Not only is this the case, but in fact high levels of stressors (e.g. those that kill organisms) generally fail to convert ESC to EIC.


2000 ◽  
Vol 83 (4) ◽  
pp. 1864-1876 ◽  
Author(s):  
Léon Tremblay ◽  
Wolfram Schultz

The orbitofrontal cortex appears to be involved in the control of voluntary, goal-directed behavior by motivational outcomes. This study investigated how orbitofrontal neurons process information about rewards in a task that depends on intact orbitofrontal functions. In a delayed go-nogo task, animals executed or withheld a reaching movement and obtained liquid or a conditioned sound as reinforcement. An initial instruction picture indicated the behavioral reaction to be performed (movement vs. nonmovement) and the reinforcer to be obtained (liquid vs. sound) after a subsequent trigger stimulus. We found task-related activations in 188 of 505 neurons in rostral orbitofrontal area 13, entire area 11, and lateral area 14. The principal task-related activations consisted of responses to instructions, activations preceding reinforcers, or responses to reinforcers. Most activations reflected the reinforcing event rather than other task components. Instruction responses occurred either in liquid- or sound-reinforced trials but rarely distinguished between movement and nonmovement reactions. These instruction responses reflected the predicted motivational outcome rather than the behavioral reaction necessary for obtaining that outcome. Activations preceding the reinforcer began slowly and terminated immediately after the reinforcer, even when the reinforcer occurred earlier or later than usually. These activations preceded usually the liquid reward but rarely the conditioned auditory reinforcer. The activations also preceded expected drops of liquid delivered outside the task, suggesting a primary appetitive rather than a task-reinforcing relationship that apparently was related to the expectation of reward. Responses after the reinforcer occurred in liquid- but rarely in sound-reinforced trials. Reward-preceding activations and reward responses were unrelated temporally to licking movements. Several neurons showed reward responses outside the task but instruction responses during the task, indicating a response transfer from primary reward to the reward-predicting instruction, possibly reflecting the temporal unpredictability of reward. In conclusion, orbitofrontal neurons report stimuli associated with reinforcers are concerned with the expectation of reward and detect reward delivery at trial end. These activities may contribute to the processing of reward information for the motivational control of goal-directed behavior.


Sign in / Sign up

Export Citation Format

Share Document