Learning selective top-down control enhances performance in a visual categorization task

2012 ◽  
Vol 108 (11) ◽  
pp. 3124-3137 ◽  
Author(s):  
Mario Pannunzi ◽  
Guido Gigante ◽  
Maurizio Mattia ◽  
Gustavo Deco ◽  
Stefano Fusi ◽  
...  

We model the putative neuronal and synaptic mechanisms involved in learning a visual categorization task, taking inspiration from single-cell recordings in inferior temporal cortex (ITC). Our working hypothesis is that learning the categorization task involves both bottom-up, ITC to prefrontal cortex (PFC), and top-down (PFC to ITC) synaptic plasticity and that the latter enhances the selectivity of the ITC neurons encoding the task-relevant features of the stimuli, thereby improving the signal-to-noise ratio. We test this hypothesis by modeling both areas and their connections with spiking neurons and plastic synapses, ITC acting as a feature-selective layer and PFC as a category coding layer. This minimal model gives interesting clues as to properties and function of the selective feedback signal from PFC to ITC that help solving a categorization task. In particular, we show that, when the stimuli are very noisy because of a large number of nonrelevant features, the feedback structure helps getting better categorization performance and decreasing the reaction time. It also affects the speed and stability of the learning process and sharpens tuning curves of ITC neurons. Furthermore, the model predicts a modulation of neural activities during error trials, by which the differential selectivity of ITC neurons to task-relevant and task-irrelevant features diminishes or is even reversed, and modulations in the time course of neural activities that appear when, after learning, corrupted versions of the stimuli are input to the network.

2007 ◽  
Vol 98 (4) ◽  
pp. 1965-1974 ◽  
Author(s):  
Masato Inoue ◽  
Akichika Mikami

We compared neuronal activities in the ventrolateral prefrontal cortex (VLPFC) and the inferior temporal cortex (IT) during the retrieval of an object from the working memory. About one third of IT neurons showed color- and target-selective (CT) or target-selective (T) response during the color cue period of the serial probe reproduction (SPR) task. These object-selective (CT and T) responses in IT could be correlated with the retrieval process of an object from the memorized multiple objects because no objects were presented during this period. However, proportion of CT and T responses was smaller in IT than in VLPFC, where two thirds of neurons showed object-selective response. In addition, object-selective response started earlier in VLPFC than in IT. These results suggest that VLPFC retrieves particular object information from the working memory and sends the retrieved object information to IT. The fact that the responses in the error trials did not decrease in IT suggests that IT is not a critical area for the retrieval process from the working memory.


2011 ◽  
Vol 23 (11) ◽  
pp. 3355-3365 ◽  
Author(s):  
Jason A. Cromer ◽  
Jefferson E. Roy ◽  
Timothy J. Buschman ◽  
Earl K. Miller

Previous work has shown that neurons in the PFC show selectivity for learned categorical groupings. In contrast, brain regions lower in the visual hierarchy, such as inferior temporal cortex, do not seem to favor category information over information about physical appearance. However, the role of premotor cortex (PMC) in categorization has not been studied, despite evidence that PMC is strongly engaged by well-learned tasks and reflects learned rules. Here, we directly compare PFC neurons with PMC neurons during visual categorization. Unlike PFC neurons, relatively few PMC neurons distinguished between categories of visual images during a delayed match-to-category task. However, despite the lack of category information in the PMC, more than half of the neurons in both PFC and PMC reflected whether the category of a test image did or did not match the category of a sample image (i.e., had match information). Thus, PFC neurons represented all variables required to solve the cognitive problem, whereas PMC neurons instead represented only the final decision variable that drove the appropriate motor action required to obtain a reward. This dichotomy fits well with PFC's hypothesized role in learning arbitrary information and directing behavior as well as the PMC's role in motor planning.


2003 ◽  
Vol 15 (2) ◽  
pp. 157-172 ◽  
Author(s):  
M. A. Schoenfeld ◽  
M. Woldorff ◽  
E. Düzel ◽  
H. Scheich ◽  
H.-J. Heinze ◽  
...  

The neural mechanisms and role of attention in the processing of visual form defined by luminance or motion cues were studied using magnetoencephalography. Subjects viewed bilateral stimuli composed of moving random dots and were instructed to covertly attend to either left or right hemifield stimuli in order to detect designated target stimuli that required a response. To generate form-from-motion (FFMo) stimuli, a subset of the dots could begin to move coherently to create the appearance of a simple form (e.g., square). In other blocks, to generate form-from-luminance (FFLu) stimuli that served as a control, a gray stimulus was presented superimposed on the randomly moving dots. Neuromagnetic responses were observed to both the FFLu and FFMo stimuli and localized to multiple visual cortical stages of analysis. Early activity in low-level visual cortical areas (striate/early extrastriate) did not differ for FFLu versus FFMo stimuli, nor as a function of spatial attention. Longer latency responses elicited by the FFLu stimuli were localized to the ventral-lateral occipital cortex (LO) and the inferior temporal cortex (IT). The FFMo stimuli also generated activity in the LO and IT, but only after first eliciting activity in the lateral occipital cortical region corresponding to MT/V5, resulting in a 50–60 msec delay in activity. All of these late responses (MT/V5, LO, and IT) were significantly modulated by spatial attention, being greatly attenuated for ignored FFLu and FFMo stimuli. These findings argue that processing of form in IT that is defined by motion requires a serial processing of information, first in the motion analysis pathway from V1 to MT/V5 and thereafter via the form analysis stream in the ventral visual pathway to IT.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaoxuan Jia ◽  
Ha Hong ◽  
Jim DiCarlo

Temporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex. Here we investigated whether plasticity of individual IT neurons underlies human core-object-recognition behavioral changes induced with unsupervised visual experience. We built a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model, after constrained by neurophysiological data, largely predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.


2016 ◽  
Vol 115 (4) ◽  
pp. 1917-1931 ◽  
Author(s):  
Mohammad Abdolrahmani (ﻣﺤﻤﺪ ﻋﺒﺪاﻟﺮﺣﻤﻨﯽ) ◽  
Takahiro Doi (土井隆弘) ◽  
Hiroshi M. Shiozaki (塩崎博史) ◽  
Ichiro Fujita (藤田一郎)

Binocular disparity is an important cue for depth perception. To correctly represent disparity, neurons must find corresponding visual features between the left- and right-eye images. The visual pathway ascending from V1 to inferior temporal cortex solves the correspondence problem. An intermediate area, V4, has been proposed to be a critical stage in the correspondence process. However, the distinction between V1 and V4 is unclear, because accumulating evidence suggests that the process begins within V1. In this article, we report that the pooled responses in macaque V4, but not responses of individual neurons, represent a solution to the correspondence problem. We recorded single-unit responses of V4 neurons to random-dot stereograms of varying degrees of anticorrelation. To achieve gradual anticorrelation, we reversed the contrast of an increasing proportion of dots as in our previous psychophysical studies, which predicted that the neural correlates of the solution to correspondence problem should gradually eliminate their disparity modulation as the level of anticorrelation increases. Inconsistent with this prediction, the tuning amplitudes of individual V4 neurons quickly decreased to a nonzero baseline with small anticorrelation. By contrast, the shapes of individual tuning curves changed more gradually so that the amplitude of population-pooled responses gradually decreased toward zero over the entire range of graded anticorrelation. We explain these results by combining multiple energy-model subunits. From a comparison with the population-pooled responses in V1, we suggest that disparity representation in V4 is distinctly advanced from that in V1. Population readout of V4 responses provides disparity information consistent with the correspondence solution.


2002 ◽  
Vol 87 (4) ◽  
pp. 1960-1973 ◽  
Author(s):  
Masayuki Watanabe ◽  
Hiroki Tanaka ◽  
Takanori Uka ◽  
Ichiro Fujita

Area V4 is an intermediate stage of the ventral visual pathway providing major input to the final stages in the inferior temporal cortex (IT). This pathway is involved in the processing of shape, color, and texture. IT neurons are also sensitive to horizontal binocular disparity, suggesting that binocular disparity is processed along the ventral visual pathway. In the present study, we examined the processing of binocular disparity information by V4 neurons. We recorded responses of V4 neurons to binocularly disparate stimuli. A population of V4 neurons modified their responses according to changes of stimulus disparity; neither monocular responses nor eye movements could account for this modulation. Disparity-tuning curves were similar for different locations within a neuron's receptive field. Neighboring neurons recorded using a single electrode displayed similar disparity-tuning properties. These findings indicate that a population of V4 neurons is selective for binocular disparity, invariant for the position of the stimulus within the receptive field. The finding that V4 neurons with similar disparity selectivity are clustered suggests the existence of functional modules for disparity processing in V4.


1999 ◽  
Vol 7 (6) ◽  
pp. E14
Author(s):  
William T. Couldwell

Knowledge or experience is voluntarily recalled from memory by reactivation of the neural representations in the cerebral association cortex. In inferior temporal cortex, which serves as the storehouse of visual long-term memory, activation of mnemonic engrams through electric stimulation results in imagery recall in humans, and neurons can be dynamically activated by the necessity for memory recall in monkeys. Neuropsychological studies and previous split-brain experiments predicted that prefrontal cortex exerts executive control upon inferior temporal cortex in memory retrieval; however, no neuronal correlate of this process has ever been detected. Here we show evidence of the top-down signal from prefrontal cortex. In the absence of bottom-up visual inputs, single inferior temporal neurons were activated by the top-down signal, which conveyed information on semantic categorization imposed by visual stimulus-stimulus association. Behavioural performance was severely impaired with loss of the top-down signal. Control experiments confirmed that the signal was transmitted not through a subcortical but through a fronto-temporal cortical pathway. Thus, feedback projections from prefrontal cortex to the posterior association cortex appear to serve the executive control of voluntary recall.


Sign in / Sign up

Export Citation Format

Share Document