scholarly journals Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaoxuan Jia ◽  
Ha Hong ◽  
Jim DiCarlo

Temporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex. Here we investigated whether plasticity of individual IT neurons underlies human core-object-recognition behavioral changes induced with unsupervised visual experience. We built a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model, after constrained by neurophysiological data, largely predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.

Author(s):  
Xiaoxuan Jia ◽  
Ha Hong ◽  
James J. DiCarlo

AbstractTemporal continuity of object identity is a feature of natural visual input, and is potentially exploited -- in an unsupervised manner -- by the ventral visual stream to build the neural representation in inferior temporal (IT) cortex and IT-dependent core object recognition behavior. Here we investigated whether plasticity of individual IT neurons underlies human behavioral changes induced with unsupervised visual experience by building a single-neuron plasticity model combined with a previously established IT population-to-recognition-behavior linking model to predict human learning effects. We found that our model quite accurately predicted the mean direction, magnitude and time course of human performance changes. We also found a previously unreported dependency of the observed human performance change on the initial task difficulty. This result adds support to the hypothesis that tolerant core object recognition in human and non-human primates is instructed -- at least in part -- by naturally occurring unsupervised temporal contiguity experience.


2009 ◽  
Vol 102 (1) ◽  
pp. 360-376 ◽  
Author(s):  
Nuo Li ◽  
David D. Cox ◽  
Davide Zoccolan ◽  
James J. DiCarlo

Primates can easily identify visual objects over large changes in retinal position—a property commonly referred to as position “invariance.” This ability is widely assumed to depend on neurons in inferior temporal cortex (IT) that can respond selectively to isolated visual objects over similarly large ranges of retinal position. However, in the real world, objects rarely appear in isolation, and the interplay between position invariance and the representation of multiple objects (i.e., clutter) remains unresolved. At the heart of this issue is the intuition that the representations of nearby objects can interfere with one another and that the large receptive fields needed for position invariance can exacerbate this problem by increasing the range over which interference acts. Indeed, most IT neurons' responses are strongly affected by the presence of clutter. While external mechanisms (such as attention) are often invoked as a way out of the problem, we show (using recorded neuronal data and simulations) that the intrinsic properties of IT population responses, by themselves, can support object recognition in the face of limited clutter. Furthermore, we carried out extensive simulations of hypothetical neuronal populations to identify the essential individual-neuron ingredients of a good population representation. These simulations show that the crucial neuronal property to support recognition in clutter is not preservation of response magnitude, but preservation of each neuron's rank-order object preference under identity-preserving image transformations (e.g., clutter). Because IT neuronal responses often exhibit that response property, while neurons in earlier visual areas (e.g., V1) do not, we suggest that preserving the rank-order object preference regardless of clutter, rather than the response magnitude, more precisely describes the goal of individual neurons at the top of the ventral visual stream.


2021 ◽  
Vol 33 (1) ◽  
pp. 146-157
Author(s):  
Chong Zhao ◽  
Geoffrey F. Woodman

It is not definitely known how direct-current stimulation causes its long-lasting effects. Here, we tested the hypothesis that the long time course of transcranial direct-current stimulation (tDCS) is because of the electrical field increasing the plasticity of the brain tissue. If this is the case, then we should see tDCS effects when humans need to encode information into long-term memory, but not at other times. We tested this hypothesis by delivering tDCS to the ventral visual stream of human participants during different tasks (i.e., recognition memory vs. visual search) and at different times during a memory task. We found that tDCS improved memory encoding, and the neural correlates thereof, but not retrieval. We also found that tDCS did not change the efficiency of information processing during visual search for a certain target object, a task that does not require the formation of new connections in the brain but instead relies on attention and object recognition mechanisms. Thus, our findings support the hypothesis that direct-current stimulation modulates brain activity by changing the underlying plasticity of the tissue.


2013 ◽  
Vol 31 (2) ◽  
pp. 197-209 ◽  
Author(s):  
BEVIL R. CONWAY

AbstractExplanations for color phenomena are often sought in the retina, lateral geniculate nucleus, and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as the middle temporal (MT) motion area, not thought to play a major role in color perception. Here, we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex) and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, whereas those in noncolor-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception.


Science ◽  
2005 ◽  
Vol 310 (5749) ◽  
pp. 863-866 ◽  
Author(s):  
Chou P. Hung ◽  
Gabriel Kreiman ◽  
Tomaso Poggio ◽  
James J. DiCarlo

Understanding the brain computations leading to object recognition requires quantitative characterization of the information represented in inferior temporal (IT) cortex. We used a biologically plausible, classifier-based readout technique to investigate the neural coding of selectivity and invariance at the IT population level. The activity of small neuronal populations (∼100 randomly selected cells) over very short time intervals (as small as 12.5 milliseconds) contained unexpectedly accurate and robust information about both object “identity” and “category.” This information generalized over a range of object positions and scales, even for novel objects. Coarse information about position and scale could also be read out from the same population.


2003 ◽  
Vol 15 (2) ◽  
pp. 157-172 ◽  
Author(s):  
M. A. Schoenfeld ◽  
M. Woldorff ◽  
E. Düzel ◽  
H. Scheich ◽  
H.-J. Heinze ◽  
...  

The neural mechanisms and role of attention in the processing of visual form defined by luminance or motion cues were studied using magnetoencephalography. Subjects viewed bilateral stimuli composed of moving random dots and were instructed to covertly attend to either left or right hemifield stimuli in order to detect designated target stimuli that required a response. To generate form-from-motion (FFMo) stimuli, a subset of the dots could begin to move coherently to create the appearance of a simple form (e.g., square). In other blocks, to generate form-from-luminance (FFLu) stimuli that served as a control, a gray stimulus was presented superimposed on the randomly moving dots. Neuromagnetic responses were observed to both the FFLu and FFMo stimuli and localized to multiple visual cortical stages of analysis. Early activity in low-level visual cortical areas (striate/early extrastriate) did not differ for FFLu versus FFMo stimuli, nor as a function of spatial attention. Longer latency responses elicited by the FFLu stimuli were localized to the ventral-lateral occipital cortex (LO) and the inferior temporal cortex (IT). The FFMo stimuli also generated activity in the LO and IT, but only after first eliciting activity in the lateral occipital cortical region corresponding to MT/V5, resulting in a 50–60 msec delay in activity. All of these late responses (MT/V5, LO, and IT) were significantly modulated by spatial attention, being greatly attenuated for ignored FFLu and FFMo stimuli. These findings argue that processing of form in IT that is defined by motion requires a serial processing of information, first in the motion analysis pathway from V1 to MT/V5 and thereafter via the form analysis stream in the ventral visual pathway to IT.


i-Perception ◽  
10.1068/if638 ◽  
2012 ◽  
Vol 3 (9) ◽  
pp. 638-638
Author(s):  
Akiko Nishio ◽  
Naokazu Goda ◽  
Hidehiko Komatsu

2014 ◽  
Vol 26 (2) ◽  
pp. 408-421 ◽  
Author(s):  
Clara A. Scholl ◽  
Xiong Jiang ◽  
Jacob G. Martin ◽  
Maximilian Riesenhuber

A hallmark of human cognition is the ability to rapidly assign meaning to sensory stimuli. It has been suggested that this fast visual object categorization ability is accomplished by a feedforward processing hierarchy consisting of shape-selective neurons in occipito-temporal cortex that feed into task circuits in frontal cortex computing conceptual category membership. We performed an EEG rapid adaptation study to test this hypothesis. Participants were trained to categorize novel stimuli generated with a morphing system that precisely controlled both stimulus shape and category membership. We subsequently performed EEG recordings while participants performed a category matching task on pairs of successively presented stimuli. We used space–time cluster analysis to identify channels and latencies exhibiting selective neural responses. Neural signals before 200 msec on posterior channels demonstrated a release from adaptation for shape changes, irrespective of category membership, compatible with a shape- but not explicitly category-selective neural representation. A subsequent cluster with anterior topography appeared after 200 msec and exhibited release from adaptation consistent with explicit categorization. These signals were subsequently modulated by perceptual uncertainty starting around 300 msec. The degree of category selectivity of the anterior signals was strongly predictive of behavioral performance. We also observed a posterior category-selective signal after 300 msec exhibiting significant functional connectivity with the initial anterior category-selective signal. In summary, our study supports the proposition that perceptual categorization is accomplished by the brain within a quarter second through a largely feedforward process culminating in frontal areas, followed by later category-selective signals in posterior regions.


Sign in / Sign up

Export Citation Format

Share Document