Deletions of Rhythmic Motoneuron Activity During Fictive Locomotion and Scratch Provide Clues to the Organization of the Mammalian Central Pattern Generator

2005 ◽  
Vol 94 (2) ◽  
pp. 1120-1132 ◽  
Author(s):  
Myriam Lafreniere-Roula ◽  
David A. McCrea

We examined the features of spontaneous deletions of bursts of motoneuron activity that can occur within otherwise rhythmic alternating flexor and extensor activity during fictive locomotion and scratch in adult decerebrate cats. Deletions of activity were observed both in hindlimb flexor and extensor motoneuron pools during brain stem–stimulation-evoked fictive locomotion but only in extensors during fictive scratch. Paired intracellular motoneuron recordings showed that deletions reduced the depolarization of homonymous motoneurons in qualitatively similar ways. Differences occurred in the extent to which activity in synergist motoneuron pools operating at other joints within the limb was reduced during deletions. The timing of the rhythmic activity that followed a deletion was often at an integer multiple of the preexisting locomotor or scratch cycle period. This maintenance of cycle period was also seen during deletions in which there was a complete failure of motoneuron depolarization. The activity of antagonist motoneurons was usually sustained during deletions with some rhythmic modulation at intervals of the preexisting cycle period. We discuss an organization of the central pattern generator for locomotion and scratch that functions as a single rhythm generator with separate and multiple pattern formation modules for controlling the hyper- and depolarization of subsets of motoneurons within the limb.

2005 ◽  
Vol 94 (3) ◽  
pp. 2045-2052 ◽  
Author(s):  
Jorge Quevedo ◽  
Katinka Stecina ◽  
Simon Gosgnach ◽  
David A. McCrea

An obstacle contacting the dorsal surface of a cat’s hind foot during the swing phase of locomotion evokes a reflex (the stumbling corrective reaction) that lifts the foot and extends the ankle to avoid falling. We show that the same sequence of ipsilateral hindlimb motoneuron activity can be evoked in decerebrate cats during fictive locomotion. As recorded in the peripheral nerves, twice threshold intensity stimulation of the cutaneous superficial peroneal (SP) nerve during the flexion phase produced a very brief excitation of ankle flexors (e.g., tibialis anterior and peroneus longus) that was followed by an inhibition for the duration of the stimulus train (10–25 shocks, 200 Hz). Extensor digitorum longus was always, and hip flexor (sartorius) activity was sometimes, inhibited during SP stimulation. At the same time, knee flexor and the normally quiescent ankle extensor motoneurons were recruited (mean latencies 4 and 16 ms) with SP stimulation during fictive stumbling correction. After the stimulus train, ankle extensor activity fell silent, and there was an excitation of hip, knee, and ankle flexors. The ongoing flexion phase was often prolonged. Hip extensors were also recruited in some fictive stumbling trials. Only the SP nerve was effective in evoking stumbling correction. Delivered during extension, SP stimulus trains increased ongoing extensor motoneuron activity as well as increasing ipsilateral hip, knee, and ankle hindlimb flexor activity in the subsequent step cycle. The fictive stumbling corrective reflex seems functionally similar to that evoked in intact, awake animals and involves a fixed pattern of short-latency reflexes as well as actions evoked through the lumbar circuitry responsible for the generation of rhythmic alternating locomotion.


2013 ◽  
Vol 109 (2) ◽  
pp. 375-388 ◽  
Author(s):  
Brent Fedirchuk ◽  
Katinka Stecina ◽  
Kasper Kyhl Kristensen ◽  
Mengliang Zhang ◽  
Claire F. Meehan ◽  
...  

Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay the activity of hindlimb afferents during locomotion, but lack input from the spinal central pattern generator. The ventral spinocerebellar tract (VSCT) neurons, on the other hand, were found to be active during actual locomotion (on a treadmill) even after deafferentation, as well as during fictive locomotion (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb nerves. Spinocerebellar tract cells with cell bodies located in the lumbar segments were identified by electrophysiological techniques and examined by extra- and intracellular microelectrode recordings. During fictive locomotion, 57/81 DSCT and 30/30 VSCT neurons showed phasic, cycle-related activity. During fictive scratch, 19/29 DSCT neurons showed activity related to the scratch cycle. We provide evidence for the first time that locomotor and scratch drive potentials are present not only in VSCT, but also in the majority of DSCT neurons. These results demonstrate that both spinocerebellar tracts receive input from the central pattern generator circuitry, often sufficient to elicit firing in the absence of sensory input.


1999 ◽  
Vol 81 (2) ◽  
pp. 950-953 ◽  
Author(s):  
Ralph A. DiCaprio

Gating of afferent input by a central pattern generator. Intracellular recordings from the sole proprioceptor (the oval organ) in the crab ventilatory system show that the nonspiking afferent fibers from this organ receive a cyclic hyperpolarizing inhibition in phase with the ventilatory motor pattern. Although depolarizing and hyperpolarizing current pulses injected into a single afferent will reset the ventilatory motor pattern, the inhibitory input is of sufficient magnitude to block afferent input to the ventilatory central pattern generator (CPG) for ∼50% of the cycle period. It is proposed that this inhibitory input serves to gate sensory input to the ventilatory CPG to provide an unambiguous input to the ventilatory CPG.


1984 ◽  
Vol 51 (6) ◽  
pp. 1257-1267 ◽  
Author(s):  
S. R. Soffe ◽  
J. D. Clarke ◽  
A. Roberts

Horseradish peroxidase- (HRP) filled microelectrodes have been used to examine the anatomy and physiology of "commissural interneurons," a morphologically defined class of spinal cord interneuron in Xenopus laevis embryos. Commissural interneurons have unipolar cell bodies in the dorsal half of the spinal cord. Their dendrites lie in the mid to ventral parts of the lateral tracts and their axons cross the cord ventrally, T branch, and ascend and descend on the opposite side of the cord. Recordings were made from animals immobilized in tubocurarine and responding to natural stimulation with three patterns of fictive motor activity. During episodes of fictive swimming, commissural interneurons are phasically excited to fire 1 spike/cycle in phase with motor discharge on the same side and receive a midcycle inhibitory postsynaptic potential (IPSP) in phase with motor discharge on the opposite side. Rhythmic activity is superimposed on a background depolarization. During periods of synchrony, phasic excitatory input doubles in frequency so that cells fire with half the swimming cycle period. The background depolarization is generally stronger than during swimming. During periods of fictive struggling, evoked by electrical stimulation of the skin, commissural interneurons fire a burst of spikes per cycle, cells being relatively hyperpolarized when motoneurons on the opposite side are active. In response to ipsilateral skin stimulation, some cells receive an IPSP at a latency of 12-20 ms. This precedes the onset of fictive locomotion. We discuss how anatomy and activity of commissural interneurons is suitable for a reciprocal inhibitory role.


2004 ◽  
Vol 91 (2) ◽  
pp. 958-977 ◽  
Author(s):  
Sami H. Jezzini ◽  
Andrew A. V. Hill ◽  
Pavlo Kuzyk ◽  
Ronald L. Calabrese

To address the general problem of intersegmental coordination of oscillatory neuronal networks, we have studied the leech heartbeat central pattern generator. The core of this pattern generator is a timing network that consists of two segmental oscillators, each of which comprises two identified, reciprocally inhibitory oscillator interneurons. Intersegmental coordination between the segmental oscillators is mediated by synaptic interactions between the oscillator interneurons and identified coordinating interneurons. The small number of neurons (8) and the distributed structure of the timing network have made the experimental analysis of the segmental oscillators as discrete, independent units possible. On the basis of this experimental work, we have made conductance-based models to explore how intersegmental phase and cycle period are determined. We show that although a previous simple model, which ignored many details of the living system, replicated some essential features of the living system, the incorporation of specific cellular and network properties is necessary to capture the behavior of the system seen under different experimental conditions. For example, spike frequency adaptation in the coordinating interneurons and details of asymmetries in intersegmental connectivity are necessary for replicating driving experiments in which one segmental oscillator was injected with periodic current pulses to entrain the activity of the entire network. Nevertheless, the basic mechanisms of phase and period control demonstrated here appear to be very general and could be used by other networks that produce coordinated segmental motor outflow.


2020 ◽  
Vol 124 (3) ◽  
pp. 914-929
Author(s):  
Angela Wenning ◽  
Young Rim Chang ◽  
Brian J. Norris ◽  
Ronald L. Calabrese

Moving blood through the segmented heart tubes of leeches requires sequential constrictions driven by motor neurons controlled by a central pattern generator. In a single heart segment, we varied stimuli to explore the neuromuscular transform. Decreasing the cycle period, e.g., to increase volume pumped over time, without altering motor burst duration and intraburst spike frequency shortens relaxation time and decreases amplitude. The likely strategy to preserve constriction amplitude is to shorten burst duration while increasing spike frequency.


2010 ◽  
Vol 365 (1551) ◽  
pp. 2383-2395 ◽  
Author(s):  
Patrick J. Whelan

Rhythmic activity is responsible for numerous essential motor functions including locomotion, breathing and chewing. In the case of locomotion, it has been realized for some time that the spinal cord contains sufficient circuitry to produce a sophisticated stepping pattern. However, the central pattern generator for locomotion in mammals has remained a ‘black box’ where inputs to the network were manipulated and the outputs interpreted. Over the last decade, new genetic approaches and techniques have been developed that provide ways to identify and manipulate the activity of classes of interneurons. The use of these techniques will be critically discussed and related to current models of network function.


2020 ◽  
Author(s):  
Simon A. Sharples ◽  
Alex Vargas ◽  
Adam P. Lognon ◽  
Leanne Young ◽  
Anchita Shonak ◽  
...  

AbstractDeveloping spinal motor networks produce a diverse array of outputs, including episodic and continuous patterns of rhythmic activity. Variation in excitability state and neuromodulatory tone can facilitate transitions between episodic and continuous rhythms; however, the intrinsic mechanisms that govern these rhythms and transitions are poorly understood. Here, we tested the capacity of a single central pattern generator (CPG) circuit with tunable properties to generate multiple outputs. To address this, we deployed a computational model composed of an inhibitory half-centre oscillator. We tested the contributions of key properties predicted by the model to the generation of an episodic rhythm produced by isolated spinal cords of the newborn mouse. The model was capable of reproducing the diverse state-dependent rhythms evoked by dopamine in the neonatal mouse spinal cord. In the model, episodic bursting depended predominantly on the endogenous oscillatory properties of neurons, with persistent Na+(INaP), Na+-K+ ATPase pump (IPump), and hyperpolarization-activated currents (Ih) playing key roles. Modulation of all three currents produced transitions between episodic and continuous rhythms and silence. Pharmacological manipulation of these properties in vitro led to consistent changes in spinally generated rhythmic outputs elicited by dopamine. The model also showed multistable zones within a narrow range of parameter space for IPump and Ih, where switches between rhythms were rapidly triggered by brief but specific perturbations. Outside of those zones, brief perturbations could reset episodic and continuous rhythmicity generated by the model. Our modelling and experimental results provide insight into mechanisms that govern the generation of multiple patterns of rhythmicity by a single CPG. We propose that neuromodulators alter circuit properties to position the network within regions of state-space that favour stable outputs or, in the case of multistable zones, facilitate rapid transitions between states.Significance statementThe ability of a single CPG to produce and transition between multiple rhythmic patterns of activity is poorly understood. We deployed a complementary computational half-centre oscillator model and an isolated spinal cord experimental model to identify key currents whose interaction produced episodic and continuous rhythmic activity. Combined, our experimental and modelling approaches suggest mechanisms that govern generating and transitioning between diverse rhythms in mammalian spinal networks. This work sheds light on the ability of a single CPG to produce episodic bouts often observed in behavioural contexts.


Sign in / Sign up

Export Citation Format

Share Document