hip flexor
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 35)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jayc C. Sedlmayr ◽  
Karl T. Bates ◽  
Jonathan J. Wisco ◽  
Emma R. Schachner

2021 ◽  
Author(s):  
Neethan Ratnakumar ◽  
Xianlian Zhou

Abstract The hip muscles account for a great percentage of the total human energy expenditure during walking and many wearable devices have been developed in assisting the hip joint to reduce the metabolic Cost Of Transport (COT) for walking. However, the effectiveness of assisting the hip in only one direction (either flexion or extension) or both directions has not been systematically studied and the underlying muscle mechanics and energetics affected by the assistance are not well understood. In this study, human-exoskeleton simulation based optimizations were performed to find optimized hip assistance torque profiles for (1) unidirectional flexion assistance, (2) unidirectional extension assistance, and (3) bidirectional flexion and extension assistance. Our results show that the bidirectional assistance is the most effective in reducing the COT of walking (22.7% reduction) followed by flexion (19.2%) and extension (11.7%). The flexion assistance resulted in more COT saving than the output of its net work by 35.9%, which indicates that the negative work done (42.2% of its positive counterpart) also played an important role in reducing the COT. The bidirectional assistance also reduced the activations of the hip extensors to a great extent and shifted the activation pattern of the hip flexor (ilipsoas). These results can provide valuable information for optimal hip actuation (timing and profiles) and help exoskeleton designers make informed decisions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253951
Author(s):  
Hisashi Mizutori ◽  
Yu Kashiwagi ◽  
Noriko Hakamada ◽  
Yasunori Tachibana ◽  
Kazuo Funato

Biomechanical features of the handstand, one of the most fundamental skills required for artistic gymnastics events, have not been well documented. The purpose of this study was to clarify the kinematics and joint moment profiles during straight arm press to handstand in different highly skilled male gymnasts. Fifty-nine male gymnasts performed a straight arm press to handstand on a force platform and were judged on their performance by experienced certified judges. Subjects were divided into two groups (highly-skilled and less-skilled). Kinematic data were obtained using a video camera synchronized with force platform. Joint moments (wrist, shoulder, hip) during each straight arm press to handstand were calculated using the inverse dynamics solution. Larger shoulder flexion moments were observed in less-skilled compared with highly- skilled performers (at 3–59%, p < 0.001) while larger hip flexion moments were observed in highly- skilled performers at 52% (p = 0.045) and 56% (p = 0.048) and normalized time of straight arm press to handstand. Major differences between highly-skilled and less-skilled performers were observed in hip joint moment production as it shifted from extension to flexion from the leg horizontal position to the handstand position in highly-skilled gymnasts. Successful straight arm press to handstand techniques observed in highly-skilled performers were characterized as a more acute pike position at toe-off as well as hip flexor moments at latter phase of the straight arm press to handstand.


2021 ◽  
Author(s):  
Elijah C. Kuska ◽  
Naser Mehrabi ◽  
Michael H. Schwartz ◽  
Katherine M. Steele

Muscle activity during gait can be described by a small set of synergies, weighted groups of muscles, that are often theorized to reflect underlying neural control. For people with neurologic injuries, like in cerebral palsy or stroke, even fewer (e.g., < 5) synergies are required to explain muscle activity during gait. This reduction in synergies is thought to reflect simplified control strategies and is associated with impairment severity and treatment outcomes. Individuals with neurologic injuries also develop secondary musculoskeletal impairments, like weakness or contracture, that can also impact gait. The combined impacts of simplified control and musculoskeletal impairments on gait remains unclear. In this study, we use a musculoskeletal model constrained to synergies to simulate unimpaired gait. We vary the number of synergies (3-5), while simulating muscle weakness and contracture to examine how altered control impacts sensitivity to muscle weakness and contracture. Our results highlight that reducing the number of synergies increases sensitivity to weakness and contracture. For example, simulations using five-synergy control tolerated 40% and 51% more knee extensor weakness than those using four- and three-synergy control, respectively. Furthermore, the model became increasingly sensitive to contracture and proximal muscle weakness, such as hamstring and hip flexor weakness, when constrained to four- and three-synergy control. However, the models sensitivity to weakness of the plantarflexors and smaller bi-articular muscles was not affected by the number of synergies. These findings provide insight into the interactions between altered control and musculoskeletal impairments, emphasizing the importance of incorporating both in future simulation studies.


2021 ◽  
Vol 44 (4) ◽  
pp. 289-294
Author(s):  
Stephen J. Preece ◽  
Yen Fang Tan ◽  
Talal D.A. Alghamdi ◽  
Frances A. Arnall

Author(s):  
Shirin Aali ◽  
Shahabeddin Bagheri

Background: Hip flexor muscles' tightness has been considered as one of the main risk factors for neuromuscular impairment of lower extremities not only lead to change the movement patterns but also probably result in changing the neuromuscular features of other muscles. The purpose of this research is study was to evaluate the iliopsoas tightness’ effect on electromyographic activity of hip extensor synergists during gait. Methods: In this case-control study fifteen 11-14 years old adolescents with iliopsoas tightness as experimental group, and 15 healthy adolescents which matched based on age, height, weight, body mass index, dominant leg and sport experience participated voluntarily as control group. Surface electromyographic activity of the gluteus maximus, adductor magnus and biceps femoris, were measured between groups during stance phase of gait. Results: Individuals with restricted hip flexor muscle length demonstrated more gluteus maximus activation during terminal stance (p=.001), more biceps femoris activation during mid stance (p=.002) and late stance (p=.001) and more adductor magnus activation during mid stance (p=.04) and late stance (p=.001). Conclusion: Adolescent soccer athletes with hip flexor muscle tightness exhibit more biceps femoris and adductor magnus and gluteus maximus activation during stance phase of gait. Thus, individuals with hip flexor muscle tightness appear to utilize different neuromuscular strategies to control lower extremity motion.


Author(s):  
Andreas Konrad ◽  
Richard Močnik ◽  
Sylvia Titze ◽  
Masatoshi Nakamura ◽  
Markus Tilp

The hip flexor muscles are major contributors to lumbar spine stability. Tight hip flexors can lead to pain in the lumbar spine, and hence to an impairment in performance. Moreover, sedentary behavior is a common problem and a major contributor to restricted hip extension flexibility. Stretching can be a tool to reduce muscle tightness and to overcome the aforementioned problems. Therefore, the purpose of this systematic review with meta-analysis was to determine the effects of a single hip flexor stretching exercise on performance parameters. The online search was performed in the following three databases: PubMed, Scopus, and Web of Science. Eight studies were included in this review with a total of 165 subjects (male: 111; female 54). In contrast to other muscle groups (e.g., plantar flexors), where 120 s of stretching likely decreases force production, it seems that isolated hip flexor stretching of up to 120 s has no effect or even a positive impact on performance-related parameters. A comparison of the effects on performance between the three defined stretch durations (30–90 s; 120 s; 270–480 s) revealed a significantly different change in performance (p = 0.02) between the studies with the lowest hip flexor stretch duration (30–90 s; weighted mean performance change: −0.12%; CI (95%): −0.49 to 0.41) and the studies with the highest hip flexor stretch duration (270–480 s; performance change: −3.59%; CI (95%): −5.92 to −2.04). Meta-analysis revealed a significant (but trivial) impairment in the highest hip flexor stretch duration of 270–480 s (SMD effect size = −0.19; CI (95%) −0.379 to 0.000; Z = −1.959; p = 0.05; I2 = 0.62%), but not in the lowest stretch duration (30–90 s). This indicates a dose-response relationship in the hip flexor muscles. Although the evidence is based on a small number of studies, this information will be of great importance for both athletes and coaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinji Takahashi ◽  
Masatoshi Hoshino ◽  
Shoichiro Ohyama ◽  
Yusuke Hori ◽  
Akito Yabu ◽  
...  

AbstractCompensatory mechanisms, such as a decrease in thoracic spine kyphosis and posterior tilting or rotation of the pelvis, aim to achieve optimal alignment of the spine. However, the effect of muscle strength on these compensatory mechanisms has not been elucidated. This study aimed to investigate the impact of back muscle and lower extremity strength on compensatory mechanisms in elderly people. Overall, 409 community-dwelling elderly participants (164 men, 245 women) were included. Age, disc degeneration, and 2 or more vertebral fractures showed a significant increase of risk for sagittal vertical axis (SVA) deterioration. Conversely, stronger back, hip flexor, and knee extensor muscles reduced the risk for SVA deterioration. To investigate the association of each muscle’s strength with compensatory mechanisms, 162 subjects with pelvic incidence-lumbar lordosis > 10° were selected. The linear regression model for thoracic kyphosis demonstrated a negative correlation with back muscle strength and positive correlation with vertebral fracture. The regression analysis for pelvic tilt demonstrated a positive correlation with knee extensor strength. Back, hip flexor, and knee extensor muscle strength were associated with sagittal spinal alignment. Back muscle strength was important for the decrease in thoracic kyphosis, and knee extensor strength was associated with pelvic tilt.


Sign in / Sign up

Export Citation Format

Share Document