scholarly journals A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex

2016 ◽  
Vol 116 (3) ◽  
pp. 938-948 ◽  
Author(s):  
Yoshihiro Noda ◽  
Robin F. H. Cash ◽  
Reza Zomorrodi ◽  
Luis Garcia Dominguez ◽  
Faranak Farzan ◽  
...  

Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) enables noninvasive neurophysiological investigation of the human cortex. A TMS paradigm of short-latency afferent inhibition (SAI) is characterized by attenuation of the motor-evoked potential (MEP) and modulation of N100 of the TMS-evoked potential (TEP) when TMS is delivered to motor cortex (M1) following median nerve stimulation. SAI is a marker of cholinergic activity in the motor cortex; however, the SAI has not been tested from the prefrontal cortex. We aimed to explore the effect of SAI in dorsolateral prefrontal cortex (DLPFC). SAI was examined in 12 healthy subjects with median nerve stimulation and TMS delivered to M1 and DLPFC at interstimulus intervals (ISIs) relative to the individual N20 latency. SAI in M1 was tested at the optimal ISI of N20 + 2 ms. SAI in DLPFC was investigated at a range of ISI from N20 + 2 to N20 + 20 ms to explore its temporal profile. For SAI in M1, the attenuation of MEP amplitude was correlated with an increase of TEP N100 from the left central area. A similar spatiotemporal neural signature of SAI in DLPFC was observed with a marked increase of N100 amplitude. SAI in DLPFC was maximal at ISI N20 + 4 ms at the left frontal area. These findings establish the neural signature of SAI in DLPFC. Future studies could explore whether DLPFC-SAI is neurophysiological marker of cholinergic dysfunction in cognitive disorders.

2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Yoshihiro Noda ◽  
Mera S. Barr ◽  
Reza Zomorrodi ◽  
Robin F. H. Cash ◽  
Pantelis Lioumis ◽  
...  

Background: The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) allows for non-invasive investigation of cortical response and connectivity in human cortex. This study aimed to examine the amplitudes and latencies of each TMS-evoked potential (TEP) component induced by single-pulse TMS (spTMS) to the left motor (M1) and dorsolateral prefrontal cortex (DLPFC) among healthy young participants (YNG), older participants (OLD), and patients with schizophrenia (SCZ). Methods: We compared the spatiotemporal characteristics of TEPs induced by spTMS among the groups. Results: Compared to YNG, M1-spTMS induced lower amplitudes of N45 and P180 in OLD and a lower amplitude of P180 in SCZ, whereas the DLPFC-spTMS induced a lower N45 in OLD. Further, OLD demonstrated latency delays in P60 after M1-spTMS and in N45-P60 over the right central region after left DLPFC-spTMS, whereas SCZ demonstrated latency delays in N45-P60 over the midline and right central regions after DLPFC-spTMS. Conclusions: These findings suggest that inhibitory and excitatory mechanisms mediating TEPs may be altered in OLD and SCZ. The amplitude and latency changes of TEPs with spTMS may reflect underlying neurophysiological changes in OLD and SCZ, respectively. The spTMS administered to M1 and the DLPFC can probe cortical functions by examining TEPs. Thus, TMS-EEG can be used to study changes in cortical connectivity and signal propagation from healthy to pathological brains.


2019 ◽  
Vol 9 (8) ◽  
pp. 177 ◽  
Author(s):  
Matt J.N. Brown ◽  
Elana R. Goldenkoff ◽  
Robert Chen ◽  
Carolyn Gunraj ◽  
Michael Vesia

Dual-site transcranial magnetic stimulation to the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) can be used to probe functional connectivity between these regions. The purpose of this study was to characterize the effect of DLPFC stimulation on ipsilateral M1 excitability while participants were at rest and contracting the left- and right-hand first dorsal interosseous muscle. Twelve participants were tested in two separate sessions at varying inter-stimulus intervals (ISI: 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, and 20 ms) at two different conditioning stimulus intensities (80% and 120% of resting motor threshold). No significant effect on ipsilateral M1 excitability was found when applying a conditioning stimulus over DLPFC at any specific inter-stimulus interval or intensity in either the left or right hemisphere. Our findings suggest neither causal inhibitory nor faciliatory influences of DLPFC on ipsilateral M1 activity while participants were at rest or when performing an isometric contraction in the target hand muscle.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
I. Rektorova ◽  
S. Sedlackova ◽  
S. Telecka ◽  
A. Hlubocky ◽  
I. Rektor

We studied whether five sessions of 10 Hz repetitive transcranial magnetic stimulation (rTMS treatment) applied over the dorsolateral prefrontal cortex (DLPFC) or the primary motor cortex (MC) in advanced Parkinson's disease (PD) patients would have any effect on L-dopa-induced dyskinesias and cortical excitability. We aimed at a randomised, controlled study. Single-pulse transcranial magnetic stimulation (TMS), paired-pulse transcranial magnetic stimulation, and the Unified Parkinson's Disease Rating Scale (UPDRS parts III and IV) were performed prior to, immediately after, and one week after an appropriate rTMS treatment. Stimulation of the left DLPFC induced a significant motor cortex depression and a trend towards the improvement of L-dopa-induced dyskinesias.


Sign in / Sign up

Export Citation Format

Share Document