scholarly journals Whisker row deprivation affects the flow of sensory information through rat barrel cortex

2017 ◽  
Vol 117 (1) ◽  
pp. 4-17 ◽  
Author(s):  
Vincent Jacob ◽  
Akinori Mitani ◽  
Taro Toyoizumi ◽  
Kevin Fox

Whisker trimming causes substantial reorganization of neuronal response properties in barrel cortex. However, little is known about experience-dependent rerouting of sensory processing following sensory deprivation. To address this, we performed in vivo intracellular recordings from layers 2/3 (L2/3), layer 4 (L4), layer 5 regular-spiking (L5RS), and L5 intrinsically bursting (L5IB) neurons and measured their multiwhisker receptive field at the level of spiking activity, membrane potential, and synaptic conductance before and after sensory deprivation. We used Chernoff information to quantify the “sensory information” contained in the firing patterns of cells in response to spared and deprived whisker stimulation. In the control condition, information for flanking-row and same-row whiskers decreased in the order L4, L2/3, L5IB, L5RS. However, after whisker-row deprivation, spared flanking-row whisker information was reordered to L4, L5RS, L5IB, L2/3. Sensory information from the trimmed whiskers was reduced and delayed in L2/3 and L5IB neurons, whereas sensory information from spared whiskers was increased and advanced in L4 and L5RS neurons. Sensory information from spared whiskers was increased in L5IB neurons without a latency change. L5RS cells exhibited the largest changes in sensory information content through an atypical plasticity combining a significant decrease in spontaneous activity and an increase in a short-latency excitatory conductance. NEW & NOTEWORTHY Sensory cortical plasticity is usually quantified by changes in evoked firing rate. In this study we quantified plasticity by changes in sensory detection performance using Chernoff information and receiver operating characteristic analysis. We found that whisker deprivation causes a change in information flow within the cortical layers and that layer 5 regular-spiking cells, despite showing only a small potentiation of short-latency input, show the greatest increase in information content for the spared input partly by decreasing their spontaneous activity.

Author(s):  
Nora Jamann ◽  
Dominik Dannehl ◽  
Robin Wagener ◽  
Corinna Corcelli ◽  
Christian Schultz ◽  
...  

SummaryThe axon initial segment (AIS) is an important axonal microdomain for action potential initiation and implicated in the regulation of neuronal excitability during activity-dependent cortical plasticity. While structural AIS plasticity has been suggested to fine-tune neuronal activity when network states change, whether it acts as a homeostatic regulatory mechanism in behaviorally relevant contexts remains poorly understood. Using an in vivo model of the mouse whisker-to-barrel pathway in combination with immunofluorescence, confocal analysis and patch-clamp electrophysiological recordings, we observed bidirectional AIS plasticity. Furthermore, we find that structural and functional AIS remodeling occurs in distinct temporal domains: long-term sensory deprivation elicits an AIS length increase, accompanied with an increase in neuronal excitability, while sensory enrichment results in a rapid AIS shortening, accompanied by a decrease in action potential generation. Our findings highlight a central role of the AIS in the homeostatic regulation of neuronal input-output relations.


2021 ◽  
Vol 118 (52) ◽  
pp. e2112212118
Author(s):  
Jiseok Lee ◽  
Joanna Urban-Ciecko ◽  
Eunsol Park ◽  
Mo Zhu ◽  
Stephanie E. Myal ◽  
...  

Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on “engrams” in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP− neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Annabella Pignataro ◽  
Antonella Borreca ◽  
Martine Ammassari-Teule ◽  
Silvia Middei

Experience modifies synaptic connectivity through processes that involve dendritic spine rearrangements in neuronal circuits. Although cAMP response element binding protein (CREB) has a key function in spines changes, its role in activity-dependent rearrangements in brain regions of rodents interacting with the surrounding environment has received little attention so far. Here we studied the effects of vibrissae trimming, a widely used model of sensory deprivation-induced cortical plasticity, on processes associated with dendritic spine rearrangements in the barrel cortex of a transgenic mouse model of CREB downregulation (mCREB mice). We found that sensory deprivation through prolonged whisker trimming leads to an increased number of thin spines in the layer V of related barrel cortex (Contra) in wild type but not mCREB mice. In the barrel field controlling spared whiskers (Ipsi), the same trimming protocol results in a CREB-dependent enlargement of dendritic spines. Last, we demonstrated that CREB regulates structural rearrangements of synapses that associate with dynamic changes of dendritic spines. Our findings suggest that CREB plays a key role in dendritic spine dynamics and synaptic circuits rearrangements that account for new brain connectivity in response to changes in the environment.


2020 ◽  
Author(s):  
Tiago Campelo ◽  
Elisabete Augusto ◽  
Nicolas Chenouard ◽  
Aron de Miranda ◽  
Vladimir Kouskoff ◽  
...  

AbstractCortical plasticity improves behaviors and helps recover lost functions after injury by adapting neuronal computations. However, the underlying synaptic and circuit mechanisms remain unclear. In mice, we found that trimming all but one whisker enhances sensory responses from the spared whisker in the somatosensory barrel cortex and occludes whisker-mediated long-term potentiation (w-LTP) in vivo. In addition, whisking-dependent behaviors that are initially impaired by single whisker experience (SWE) rapidly recover when associated cortical regions remap. Blocking the surface diffusion of AMPA receptors (AMPARs) suppresses the expression of w-LTP in naïve mice with all whiskers intact, demonstrating that physiologically induced LTP in vivo requires AMPARs trafficking. We used this approach to demonstrate that w-LTP is required for SWE-mediated strengthening of synaptic inputs and initiates the recovery of previously learned skills during the early phases of SWE. Taken together, our data reveal that w-LTP mediates cortical remapping and behavioral improvement upon partial sensory deafferentation and demonstrates that restoration of sensory function after peripheral injury can be manipulated.


2019 ◽  
Author(s):  
Satoshi Fujimoto ◽  
Marcus N. Leiwe ◽  
Richi Sakaguchi ◽  
Yuko Muroyama ◽  
Reiko Kobayakawa ◽  
...  

ABSTRACTIn the mouse olfactory bulb, sensory information detected by ∼1,000 types of olfactory sensory neurons (OSNs) is represented by the glomerular map. The second-order neurons, mitral and tufted cells, connect a single primary dendrite to one glomerulus. This forms discrete connectivity between the ∼1,000 types of input and output neurons. It has remained unknown how this discrete dendrite wiring is established during development. We found that genetically silencing neuronal activity in mitral cells, but not from OSNs, perturbs the dendrite pruning of mitral cells. In vivo calcium imaging of awake neonatal animals revealed two types of spontaneous neuronal activity in mitral/tufted cells, but not in OSNs. Pharmacological and knockout experiments revealed a role for glutamate and NMDARs. The genetic blockade of neurotransmission among mitral/tufted cells reduced spontaneous activity and perturbed dendrite wiring. Thus, spontaneous network activity generated within the olfactory bulb self-organizes the parallel discrete connections in the mouse olfactory system.


2010 ◽  
Vol 26 (5) ◽  
pp. 388-394 ◽  
Author(s):  
Sheikhkanloui-Milan Hamid ◽  
Sheibani Vahid ◽  
Afarinesh Mohammadreza ◽  
Esmaeili-Mahani Saeed ◽  
Shamsizadeh Ali ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Aleksandra Kaliszewska ◽  
Malgorzata Kossut

Npas4 has recently been identified as an important factor in brain plasticity, particularly in mechanisms of inhibitory control. Little is known about Npas4 expression in terms of cortical plasticity. In the present study expressions of Npas4 and the archetypal immediate early gene (IEG) c-Fos were investigated in the barrel cortex of mice after sensory deprivation (sparing one row of whiskers for 7 days) or sensory conditioning (pairing stimulation of one row of whiskers with aversive stimulus). Laser microdissection of individual barrel rows allowed for analysis of IEGs expression precisely in deprived and nondeprived barrels (in deprivation study) or stimulated and nonstimulated barrels (in conditioning study). Cortex activation by sensory conditioning was found to upregulate the expression of both Npas4 and c-Fos. Reorganization of cortical circuits triggered by removal of selected rows of whiskers strongly affected c-Fos but not Npas4 expression. We hypothesize that increased inhibitory synaptogenesis observed previously after conditioning may be mediated by Npas4 expression.


2018 ◽  
Vol 10 (426) ◽  
pp. eaag1328 ◽  
Author(s):  
Andrew W. Kraft ◽  
Adam Q. Bauer ◽  
Joseph P. Culver ◽  
Jin-Moo Lee

Recovery after stroke, a major cause of adult disability, is often unpredictable and incomplete. Behavioral recovery is associated with functional reorganization (remapping) in perilesional regions, suggesting that promoting this process might be an effective strategy to enhance recovery. However, the molecular mechanisms underlying remapping after brain injury and the consequences of its modulation are poorly understood. Focal sensory loss or deprivation has been shown to induce remapping in the corresponding brain areas through activity-regulated cytoskeleton-associated protein (Arc)–mediated synaptic plasticity. We show that targeted sensory deprivation via whisker trimming in mice after induction of ischemic stroke in the somatosensory cortex representing forepaw accelerates remapping into the whisker barrel cortex and improves sensorimotor recovery. These improvements persisted even after focal sensory deprivation ended (whiskers allowed to regrow). Mice deficient in Arc, a gene critical for activity-dependent synaptic plasticity, failed to remap or recover sensorimotor function. These results indicate that post-stroke remapping occurs through Arc-mediated synaptic plasticity and is required for behavioral recovery. Furthermore, our findings suggest that enhancing perilesional cortical plasticity via focal sensory deprivation improves recovery after ischemic stroke in mice.


2021 ◽  
Author(s):  
Christine M Cross ◽  
Laura Mediavilla Santos ◽  
Nick Whiteley ◽  
Karen Luyt ◽  
Michael C Ashby

Neonatal sensory experience shapes development of neural pathways carrying sensory information to the cortex. These pathways link to wider functional networks that coordinate activity of separate cortical regions, but it remains unknown when these broader networks emerge or how their maturation is influenced by sensory experience. By imaging activity across the cortex in neonatal mice, we have found unexpectedly early emergence of coordinated activity within a sensorimotor network that includes whisker-related somatosensory cortex and motor cortex. This network is spontaneously active but is not engaged by sensory stimulation, even though whisker deflection reliably drives cortical activity within barrel cortex. Acute silencing of the sensory periphery ablated spontaneous activity that was restricted to barrel cortex but spared this early sensorimotor network coactivity, suggesting that it is driven from elsewhere. Furthermore, perturbing sensory experience by whisker trimming did not impact emergence or early maturation of spontaneous activity in the sensorimotor network. As such, functional sensorimotor cortical networks develop early and, in contrast to development of ascending sensory pathways, their initial maturation is independent of sensory experience.


2018 ◽  
Vol 120 (6) ◽  
pp. 2897-2907 ◽  
Author(s):  
Olivier D. Laflamme ◽  
Turgay Akay

Sensory information from one leg has been known to elicit reflex responses in the contralateral leg, known as “crossed reflexes,” and these have been investigated extensively in cats and humans. Furthermore, experiments with mice have shown commissural pathways in detail by using in vitro and in vivo physiological approaches combined with genetics. However, the relationship between these commissural pathways discovered in mice and crossed reflex pathways described in cats and humans is not known. In this study, we analyzed the crossed reflex in mice by using in vivo electromyographic recording techniques combined with peripheral nerve stimulation protocols to provide a detailed description of the crossed reflex pathways. We show that excitatory crossed reflexes are mediated by both proprioceptive and cutaneous afferent activation. In addition, we provide evidence for a short-latency inhibitory crossed reflex pathway likely mediated by cutaneous feedback. Furthermore, the short-latency crossed inhibition is downregulated in the knee extensor muscle and the ankle flexor muscle during locomotion. In conclusion, this article provides an analysis of excitatory and inhibitory crossed reflex pathways during resting and locomoting mice in vivo. The data presented in this article pave the way for future research aimed at understanding crossed reflexes using genetics in mice.NEW & NOTEWORTHY We describe for the first time excitatory and inhibitory crossed reflex pathways in mouse spinal cord in vivo and show that the inhibitory pathways are modulated during walking. This is a first step toward an understanding of crossed reflexes and their function during walking using in vivo recording techniques combined with mouse genetics.


Sign in / Sign up

Export Citation Format

Share Document