Resting-state functional connectivity in adolescents experiencing subclinical and clinical symptoms of depression: A mini-review of recent evidence

Author(s):  
Aidan P. Schmitt

Adolescence is a developmental period associated with major neural reorganization and the onset of many psychological disorders. Depression in particular is prevalent and impairing in adolescents, and rates have been rising in recent years. Recent advances in the neurobiology of adolescent depression contribute to a better understanding of functional connectivity among neural networks and represent a promising start for determining biomarkers of depression and potential areas of intervention.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Chemin Lin ◽  
Maria Ly ◽  
Helmet T. Karim ◽  
Wenjing Wei ◽  
Beth E. Snitz ◽  
...  

Abstract Background Pathological processes contributing to Alzheimer’s disease begin decades prior to the onset of clinical symptoms. There is significant variation in cognitive changes in the presence of pathology, functional connectivity may be a marker of compensation to amyloid; however, this is not well understood. Methods We recruited 64 cognitively normal older adults who underwent neuropsychological testing and biannual magnetic resonance imaging (MRI), amyloid imaging with Pittsburgh compound B (PiB)-PET, and glucose metabolism (FDG)-PET imaging for up to 6 years. Resting-state MRI was used to estimate connectivity of seven canonical neural networks using template-based rotation. Using voxel-wise paired t-tests, we identified neural networks that displayed significant changes in connectivity across time. We investigated associations among amyloid and longitudinal changes in connectivity and cognitive function by domains. Results Left middle frontal gyrus connectivity within the memory encoding network increased over time, but the rate of change was lower with greater amyloid. This was no longer significant in an analysis where we limited the sample to only those with two time points. We found limited decline in cognitive domains overall. Greater functional connectivity was associated with better attention/processing speed and executive function (independent of time) in those with lower amyloid but was associated with worse function with greater amyloid. Conclusions Increased functional connectivity serves to preserve cognitive function in normal aging and may fail in the presence of pathology consistent with compensatory models.


2016 ◽  
Vol 34 ◽  
pp. 56-63 ◽  
Author(s):  
G. Rey ◽  
C Piguet ◽  
A Benders ◽  
S Favre ◽  
SB Eickhoff ◽  
...  

AbstractBackgroundPrevious functional magnetic resonance imaging studies in bipolar disorder (BD) have evidenced changes in functional connectivity (FC) in brain areas associated with emotion processing, but how these changes vary with mood state and specific clinical symptoms is not fully understood.MethodsWe investigated resting-state FC between a priori regions of interest (ROIs) from the default-mode network and key structures for emotion processing and regulation in 27 BD patients and 27 matched healthy controls. We further compared connectivity patterns in subgroups of 15 euthymic and 12 non-euthymic patients and tested for correlations of the connectivity strength with measures of mood, anxiety, and rumination tendency. No correction for multiple comparisons was applied given the small population sample and pre-defined target ROIs.ResultsOverall, regardless of mood state, BD patients exhibited increased FC of the left amygdala with left sgACC and PCC, relative to controls. In addition, non-euthymic BD patients showed distinctive decrease in FC between right amygdala and sgACC, whereas euthymic patients showed lower FC between PCC and sgACC. Euthymic patients also displayed increased FC between sgACC and right VLPFC. The sgACC–PCC and sgACC–left amygdala connections were modulated by rumination tendency in non-euthymic patients, whereas the sgACC-VLPFC connection was modulated by both the current mood and tendency to ruminate.ConclusionsOur results suggest that sgACC-amygdala coupling is critically affected during mood episodes, and that FC of sgACC play a pivotal role in mood normalization through its interactions with the VLPFC and PCC. However, these preliminary findings require replication with larger samples of patients.


2011 ◽  
Vol 70 (12) ◽  
pp. 1134-1142 ◽  
Author(s):  
Leighton B.N. Hinkley ◽  
Sophia Vinogradov ◽  
Adrian G. Guggisberg ◽  
Melissa Fisher ◽  
Anne M. Findlay ◽  
...  

2014 ◽  
Vol 71 (10) ◽  
pp. 1138 ◽  
Author(s):  
Kathryn R. Cullen ◽  
Melinda K. Westlund ◽  
Bonnie Klimes-Dougan ◽  
Bryon A. Mueller ◽  
Alaa Houri ◽  
...  

2021 ◽  
pp. 026988112110264
Author(s):  
Drummond E-Wen McCulloch ◽  
Martin Korsbak Madsen ◽  
Dea Siggaard Stenbæk ◽  
Sara Kristiansen ◽  
Brice Ozenne ◽  
...  

Background: Psilocybin is a psychedelic drug that has shown lasting positive effects on clinical symptoms and self-reported well-being following a single dose. There has been little research into the long-term effects of psilocybin on brain connectivity in humans. Aim: Evaluate changes in resting-state functional connectivity (RSFC) at 1 week and 3 months after one psilocybin dose in 10 healthy psychedelic-naïve volunteers and explore associations between change in RSFC and related measures. Methods: Participants received 0.2–0.3 mg/kg psilocybin in a controlled setting. Participants completed resting-state functional magnetic resonance imaging (fMRI) scans at baseline, 1-week and 3-month post-administration and [11C]Cimbi-36 PET scans at baseline and 1 week. We examined changes in within-network, between-network and region-to-region RSFC. We explored associations between changes in RSFC and psilocybin-induced phenomenology as well as changes in psychological measures and neocortex serotonin 2A receptor binding. Results: Psilocybin was well tolerated and produced positive changes in well-being. At 1 week only, executive control network (ECN) RSFC was significantly decreased (Cohen’s d = −1.73, pFWE = 0.010). We observed no other significant changes in RSFC at 1 week or 3 months, nor changes in region-to-region RSFC. Exploratory analyses indicated that decreased ECN RSFC at 1 week predicted increased mindfulness at 3 months ( r = −0.65). Conclusions: These findings in a small cohort indicate that psilocybin affects ECN function within the psychedelic ‘afterglow’ period. Our findings implicate ECN modulation as mediating psilocybin-induced, long-lasting increases in mindfulness. Although our findings implicate a neural pathway mediating lasting psilocybin effects, it is notable that changes in neuroimaging measures at 3 months, when personality changes are observed, remain to be identified.


Sign in / Sign up

Export Citation Format

Share Document