State-Dependent Performance of Optic-Flow Processing Interneurons

2009 ◽  
Vol 102 (6) ◽  
pp. 3606-3618 ◽  
Author(s):  
Kit D. Longden ◽  
Holger G. Krapp

Active locomotive states are metabolically expensive and require efficient sensory processing both to avoid wasteful movements and to cope with an extended bandwidth of sensory stimuli. This is particularly true for flying animals because flight, as opposed to walking or resting, imposes a steplike increase in metabolism for the precise execution and control of movements. Sensory processing itself carries a significant metabolic cost, but the principles governing the adjustment of sensory processing to different locomotor states are not well understood. We use the blowfly as a model system to study the impact on visual processing of a neuromodulator, octopamine, which is known to be involved in the regulation of flight physiology. We applied an octopamine agonist and recorded the directional motion responses of identified visual interneurons known to process self-motion–induced optic flow to directional motion stimuli. The neural response range of these neurons is increased and the response latency is reduced. We also found that, due to an elevated spontaneous spike rate, the cells' negative signaling range is increased. Meanwhile, the preferred self-motion parameters the cells encode were state independent. Our results indicate that in the blowfly energetically expensive sensory coding strategies, such as rapid, large responses, and high spontaneous spike activity could be adjusted by the neuromodulator octopamine, likely to save energy during quiet locomotor states.

2016 ◽  
Author(s):  
Kit D. Longden ◽  
Martina Wicklein ◽  
Benjamin J. Hardcastle ◽  
Stephen J. Huston ◽  
Holger G. Krapp

SummaryMany animals use the visual motion generated by travelling in a line, the translatory optic flow, to successfully navigate obstacles: near objects appear larger and to move more quickly than distant ones. Flies are experts at navigating cluttered environments, and while their visual processing of rotatory optic flow is understood in exquisite detail, how they process translatory optic flow remains a mystery. Here, we present novel cell types that have motion receptive fields matched to translation self-motion, the vertical translation (VT) cells. One of these, the VT1 cell, encodes forwards sideslip self-motion, and fires action potentials in clusters of spikes, spike bursts. We show that the spike burst coding is size and speed-tuned, and is selectively modulated by parallax motion, the relative motion experienced during translation. These properties are spatially organized, so that the cell is most excited by clutter rather than isolated objects. When the fly is presented with a simulation of flying past an elevated object, the spike burst activity is modulated by the height of the object, and the single spike rate is unaffected. When the moving object alone is experienced, the cell is weakly driven. Meanwhile, the VT2-3 cells have motion receptive fields matched to the lift axis. In conjunction with previously described horizontal cells, the VT cells have the properties required for the fly to successfully navigate clutter and encode its movements along near cardinal axes of thrust, lift and forward sideslip.


2006 ◽  
Vol 96 (3) ◽  
pp. 1602-1614 ◽  
Author(s):  
K. Karmeier ◽  
J. H. van Hateren ◽  
R. Kern ◽  
M. Egelhaaf

In sensory systems information is encoded by the activity of populations of neurons. To analyze the coding properties of neuronal populations sensory stimuli have usually been used that were much simpler than those encountered in real life. It has been possible only recently to stimulate visual interneurons of the blowfly with naturalistic visual stimuli reconstructed from eye movements measured during free flight. Therefore we now investigate with naturalistic optic flow the coding properties of a small neuronal population of identified visual interneurons in the blowfly, the so-called VS and HS neurons. These neurons are motion sensitive and directionally selective and are assumed to extract information about the animal's self-motion from optic flow. We could show that neuronal responses of VS and HS neurons are mainly shaped by the characteristic dynamical properties of the fly's saccadic flight and gaze strategy. Individual neurons encode information about both the rotational and the translational components of the animal's self-motion. Thus the information carried by individual neurons is ambiguous. The ambiguities can be reduced by considering neuronal population activity. The joint responses of different subpopulations of VS and HS neurons can provide unambiguous information about the three rotational and the three translational components of the animal's self-motion and also, indirectly, about the three-dimensional layout of the environment.


Author(s):  
Clarissa J Whitmire ◽  
Yi J Liew ◽  
Garrett B. Stanley

Sensory signals from the outside world are transduced at the periphery, passing through thalamus before reaching cortex, ultimately giving rise to the sensory representations that enable us to perceive the world. The thalamocortical circuit is particularly sensitive to the temporal precision of thalamic spiking due to highly convergent synaptic connectivity. Thalamic neurons can exhibit burst and tonic modes of firing that strongly influence timing within the thalamus. The impact of these changes in thalamic state on sensory encoding in the cortex, however, remains unclear. Here, we investigated the role of thalamic state on timing in the thalamocortical circuit of the vibrissa pathwayin the anesthetized rat. We optogenetically hyperpolarized thalamus while recording single unit activity in both thalamus and cortex. Tonic spike triggered analysis revealed temporally precise thalamic spiking that was locked to weak white-noise sensory stimuli, while thalamic burst spiking was associated with a loss in stimulus-locked temporal precision. These thalamic state dependent changes propagated to cortex such that the cortical timing precision was diminished during the hyperpolarized (burst biased) thalamic state. While still sensory driven, the cortical neurons became significantly less precisely locked to the weak white-noise stimulus. The results here suggests a state dependent differential regulation of spike timing precision in the thalamus that could gate what signals are ultimately propagated to cortex.


Author(s):  
Ana Gentil-Gutiérrez ◽  
José Luis Cuesta-Gómez ◽  
Paula Rodríguez-Fernández ◽  
Jerónimo Javier González-Bernal

(1) Background: Children with Autism Spectrum Disorder (ASD) frequently have difficulties in processing sensory information, which is a limitation when participating in different contexts, such as school. The objective of the present study was to compare the sensory processing characteristics of children with ASD in the natural context of school through the perception of professionals in the field of education, in comparison with neurodevelopmental children (2) Methods: A cross-sectional descriptive study as conducted with study population consisting of children between three and ten years old, 36 of whom were diagnosed with ASD and attended the Autismo Burgos association; the remaining 24 had neurotypical development. The degree of response of the children to sensory stimuli at school was evaluated using the Sensory Profile-2 (SP-2) questionnaire in its school version, answered by the teachers. (3) Results: Statistically significant differences were found in sensory processing patterns (p = 0.001), in sensory systems (p = 0.001) and in school factors (p = 0.001). Children with ASD who obtained worse results. (4) Conclusions: Children with ASD are prone to present sensory alterations in different contexts, giving nonadapted behavioral and learning responses.


2010 ◽  
Vol 107 (5) ◽  
pp. 2265-2270 ◽  
Author(s):  
Zachary M. Weil ◽  
Qiuyu Zhang ◽  
Allison Hornung ◽  
David Blizard ◽  
Donald W. Pfaff

Although there is an extensive amount known about specific sensory and motor functions of the vertebrate brain, less is understood about the regulation of global brain states. We have recently proposed that a function termed generalized arousal (Ag) serves as the most elemental driving force in the nervous system, responsible for the initial activation of all behavioral responses. An animal with increased generalized CNS arousal is characterized by greater motor activity, increased responsivity to sensory stimuli, and greater emotional lability. Implicit in this theory was the prediction that increases in generalized arousal would augment specific motivated behaviors that depend on arousal. Here, we address the idea directly by testing two lines of mice bred for high or low levels of generalized arousal and assessing their responses in tests of specific forms of behavioral arousal, sex and anxiety/exploration. We report that animals selected for differential generalized arousal exhibit marked increases in sensory, motor, and emotional reactivity in our arousal assay. Furthermore, male mice selected for high levels of generalized arousal were excitable and showed more incomplete mounts before the first intromission (IN), but having achieved that IN, they exhibited far fewer IN before ejaculating, as well as ejaculating much sooner after the first IN, thus indicating a high level of sexual arousal. Additionally, high-arousal animals of both sexes exhibited greater levels of anxiety-like behaviors and reduced exploratory behavior in the elevated plus maze and light-dark box tasks. Taken together, these data illustrate the impact of Ag on motivated behaviors.


2010 ◽  
Vol 103 (4) ◽  
pp. 1865-1873 ◽  
Author(s):  
Tao Zhang ◽  
Kenneth H. Britten

The ventral intraparietal area (VIP) of the macaque monkey is thought to be involved in judging heading direction based on optic flow. We recorded neuronal discharges in VIP while monkeys were performing a two-alternative, forced-choice heading discrimination task to relate quantitatively the activity of VIP neurons to monkeys' perceptual choices. Most VIP neurons were responsive to simulated heading stimuli and were tuned such that their responses changed across a range of forward trajectories. Using receiver operating characteristic (ROC) analysis, we found that most VIP neurons were less sensitive to small heading changes than was the monkey, although a minority of neurons were equally sensitive. Pursuit eye movements modestly yet significantly increased both neuronal and behavioral thresholds by approximately the same amount. Our results support the view that VIP activity is involved in self-motion judgments.


2001 ◽  
Vol 86 (2) ◽  
pp. 692-702 ◽  
Author(s):  
Michaël B. Zugaro ◽  
Eiichi Tabuchi ◽  
Céline Fouquier ◽  
Alain Berthoz ◽  
Sidney I. Wiener

Head direction (HD) cells discharge selectively in macaques, rats, and mice when they orient their head in a specific (“preferred”) direction. Preferred directions are influenced by visual cues as well as idiothetic self-motion cues derived from vestibular, proprioceptive, motor efferent copy, and command signals. To distinguish the relative importance of active locomotor signals, we compared HD cell response properties in 49 anterodorsal thalamic HD cells of six male Long-Evans rats during active displacements in a foraging task as well as during passive rotations. Since thalamic HD cells typically stop firing if the animals are tightly restrained, the rats were trained to remain immobile while drinking water distributed at intervals from a small reservoir at the center of a rotatable platform. The platform was rotated in a clockwise/counterclockwise oscillation to record directional responses in the stationary animals while the surrounding environmental cues remained stable. The peak rate of directional firing decreased by 27% on average during passive rotations ( r 2 = 0.73, P< 0.001). Individual cells recorded in sequential sessions ( n = 8) reliably showed comparable reductions in peak firing, but simultaneously recorded cells did not necessarily produce identical responses. All of the HD cells maintained the same preferred directions during passive rotations. These results are consistent with the hypothesis that the level of locomotor activity provides a state-dependent modulation of the response magnitude of AD HD cells. This could result from diffusely projecting neuromodulatory systems associated with motor state.


2011 ◽  
Vol 2 ◽  
Author(s):  
Juliane Britz ◽  
Christoph M. Michel

2021 ◽  
Vol 11 (9) ◽  
pp. 1205
Author(s):  
Aiste Dirzyte ◽  
Aivaras Vijaikis ◽  
Aidas Perminas ◽  
Romualda Rimasiute-Knabikiene ◽  
Lukas Kaminskis ◽  
...  

Educational systems around the world encourage students to engage in programming activities, but programming learning is one of the most challenging learning tasks. Thus, it was significant to explore the factors related to programming learning. This study aimed to identify computer programming e-learners’ personality traits, self-reported cognitive abilities and learning motivating factors in comparison with other e-learners. We applied a learning motivating factors questionnaire, the Big Five Inventory—2, and the SRMCA instruments. The sample consisted of 444 e-learners, including 189 computer programming e-learners, the mean age was 25.19 years. It was found that computer programming e-learners demonstrated significantly lower scores of extraversion, and significantly lower scores of motivating factors of individual attitude and expectation, reward and recognition, and punishment. No significant differences were found in the scores of self-reported cognitive abilities between the groups. In the group of computer programming e-learners, extraversion was a significant predictor of individual attitude and expectation; conscientiousness and extraversion were significant predictors of challenging goals; extraversion and agreeableness were significant predictors of clear direction; open-mindedness was a significant predictor of a diminished motivating factor of punishment; negative emotionality was a significant predictor of social pressure and competition; comprehension-knowledge was a significant predictor of individual attitude and expectation; fluid reasoning and comprehension-knowledge were significant predictors of challenging goals; comprehension-knowledge was a significant predictor of clear direction; and visual processing was a significant predictor of social pressure and competition. The SEM analysis demonstrated that personality traits (namely, extraversion, conscientiousness, and reverted negative emotionality) statistically significantly predict learning motivating factors (namely, individual attitude and expectation, and clear direction), but the impact of self-reported cognitive abilities in the model was negligible in both groups of participants and non-participants of e-learning based computer programming courses; χ² (34) = 51.992, p = 0.025; CFI = 0.982; TLI = 0.970; NFI = 0.950; RMSEA = 0.051 [0.019–0.078]; SRMR = 0.038. However, as this study applied self-reported measures, we strongly suggest applying neurocognitive methods in future research.


i-Perception ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 204166952110557
Author(s):  
Diederick C. Niehorster

The concept of optic flow, a global pattern of visual motion that is both caused by and signals self-motion, is canonically ascribed to James Gibson's 1950 book “ The Perception of the Visual World.” There have, however, been several other developments of this concept, chiefly by Gwilym Grindley and Edward Calvert. Based on rarely referenced scientific literature and archival research, this article describes the development of the concept of optic flow by the aforementioned authors and several others. The article furthermore presents the available evidence for interactions between these authors, focusing on whether parts of Gibson's proposal were derived from the work of Grindley or Calvert. While Grindley's work may have made Gibson aware of the geometrical facts of optic flow, Gibson's work is not derivative of Grindley's. It is furthermore shown that Gibson only learned of Calvert's work in 1956, almost a decade after Gibson first published his proposal. In conclusion, the development of the concept of optic flow presents an intriguing example of convergent thought in the progress of science.


Sign in / Sign up

Export Citation Format

Share Document