spike bursts
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 14)

H-INDEX

29
(FIVE YEARS 1)

2022 ◽  
Vol 7 (4) ◽  
pp. 287-291
Author(s):  
Venkateshwarla Rama Raju

Multineural spikes were acquired with a multisite electrode placed in the hippocampus pyramidal cell layer of non-primate anesthetized snitch animals. If the impedance of each electrode-site is relatively low and the distance amongst electrode sites is appropriately miniatured, a spike generated by a neuron is parallelly recorded at multielectrode sites with different amplitudes. The covariance between the spike of the at each electrode-point and a template was computed as a damping-factor due to the volume conduction of the spike from the neuron to electrode-site. Computed damping factors were vectorized and analyzed by simple but elegant hierarchical-clustering using a multidimensional statistical-test. Since a cluster of damping vectors was shown to correspond to an antidromically identified neuron, spikes of distinct neurons are classified by suggesting to the scatterings of damping vectors. Errors in damping vector computing due to partially overlapping spikes were minimized by successively subtracting preceding spikes from raw data. Clustering errors due to complex-spike-bursts (i.e., spikes with variable-amplitudes) were prevented by detecting such bursts and using only the first spike of a burst for clustering.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009558
Author(s):  
Eilam Goldenberg Leleo ◽  
Idan Segev

The output of neocortical layer 5 pyramidal cells (L5PCs) is expressed by a train of single spikes with intermittent bursts of multiple spikes at high frequencies. The bursts are the result of nonlinear dendritic properties, including Na+, Ca2+, and NMDA spikes, that interact with the ~10,000 synapses impinging on the neuron’s dendrites. Output spike bursts are thought to implement key dendritic computations, such as coincidence detection of bottom-up inputs (arriving mostly at the basal tree) and top-down inputs (arriving mostly at the apical tree). In this study we used a detailed nonlinear model of L5PC receiving excitatory and inhibitory synaptic inputs to explore the conditions for generating bursts and for modulating their properties. We established the excitatory input conditions on the basal versus the apical tree that favor burst and show that there are two distinct types of bursts. Bursts consisting of 3 or more spikes firing at < 200 Hz, which are generated by stronger excitatory input to the basal versus the apical tree, and bursts of ~2-spikes at ~250 Hz, generated by prominent apical tuft excitation. Localized and well-timed dendritic inhibition on the apical tree differentially modulates Na+, Ca2+, and NMDA spikes and, consequently, finely controls the burst output. Finally, we explored the implications of different burst classes and respective dendritic inhibition for regulating synaptic plasticity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaojie Gao ◽  
Franziska Bender ◽  
Heun Soh ◽  
Changwan Chen ◽  
Mahsa Altafi ◽  
...  

AbstractHippocampal pyramidal cells encode an animal’s location by single action potentials and complex spike bursts. These elementary signals are believed to play distinct roles in memory consolidation. The timing of single spikes and bursts is determined by intrinsic excitability and theta oscillations (5–10 Hz). Yet contributions of these dynamics to place fields remain elusive due to the lack of methods for specific modification of burst discharge. In mice lacking Kcnq3-containing M-type K+ channels, we find that pyramidal cell bursts are less coordinated by the theta rhythm than in controls during spatial navigation, but not alert immobility. Less modulated bursts are followed by an intact post-burst pause of single spike firing, resulting in a temporal discoordination of network oscillatory and intrinsic excitability. Place fields of single spikes in one- and two-dimensional environments are smaller in the mutant. Optogenetic manipulations of upstream signals reveal that neither medial septal GABA-ergic nor cholinergic inputs alone, but rather their joint activity, is required for entrainment of bursts. Our results suggest that altered representations by bursts and single spikes may contribute to deficits underlying cognitive disabilities associated with KCNQ3-mutations in humans.


2021 ◽  
Vol 21 (6) ◽  
pp. 148
Author(s):  
Jian-Fei Tang ◽  
De-Jin Wu ◽  
Jun-Lin Wan ◽  
Ling Chen ◽  
Cheng-Ming Tan
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph M. Fabian ◽  
Steven D. Wiederman

AbstractDragonflies visually detect prey and conspecifics, rapidly pursuing these targets via acrobatic flights. Over many decades, studies have investigated the elaborate neuronal circuits proposed to underlie this rapid behaviour. A subset of dragonfly visual neurons exhibit exquisite tuning to small, moving targets even when presented in cluttered backgrounds. In prior work, these neuronal responses were quantified by computing the rate of spikes fired during an analysis window of interest. However, neuronal systems can utilize a variety of neuronal coding principles to signal information, so a spike train’s information content is not necessarily encapsulated by spike rate alone. One example of this is burst coding, where neurons fire rapid bursts of spikes, followed by a period of inactivity. Here we show that the most studied target-detecting neuron in dragonflies, CSTMD1, responds to moving targets with a series of spike bursts. This spiking activity differs from those in other identified visual neurons in the dragonfly, indicative of different physiological mechanisms underlying CSTMD1’s spike generation. Burst codes present several advantages and disadvantages compared to other coding approaches. We propose functional implications of CSTMD1’s burst coding activity and show that spike bursts enhance the robustness of target-evoked responses.


2021 ◽  
Author(s):  
Eilam Goldenberg Leleo ◽  
Idan Segev

AbstractThe output of neocortical layer 5 pyramidal cells (L5PCs) is expressed by a train of single spikes with intermittent bursts of multiple spikes at high frequencies. The bursts are the result of nonlinear dendritic properties, including Na+, Ca2+, and NMDA spikes, that interact with the ∼10,000 synapses impinging on the neuron’s dendrites. Output spike bursts are thought to implement key dendritic computations, such as coincidence detection of bottom-up inputs (arriving mostly at the basal tree) and top-down inputs (arriving mostly at the apical tree). In this study we used a detailed nonlinear model of L5PC receiving excitatory and inhibitory synaptic inputs to explore the conditions for generating bursts and for modulating their properties. We established the excitatory input conditions on the basal versus the apical tree that favor burst and show that there are two distinct types of bursts. Bursts consisting of 3 or more spikes firing at < 200 Hz, which are generated by stronger excitatory input to the basal versus the apical tree, and bursts of ∼2-spikes at ∼250 Hz, generated by prominent apical tuft excitation. Localized and well-timed dendritic inhibition on the apical tree differentially modulates Na+, Ca2+, and NMDA spikes and, consequently, finely controls the burst output. Finally, we explored the implications of different burst classes and respective dendritic inhibition for regulating synaptic plasticity.


2020 ◽  
Vol 16 (11) ◽  
pp. e1007726
Author(s):  
Toshiyuki Ishii ◽  
Toshihiko Hosoya

Neurons in various regions of the brain generate spike bursts. While the number of spikes within a burst has been shown to carry information, information coding by interspike intervals (ISIs) is less well understood. In particular, a burst with k spikes has k−1 intraburst ISIs, and these k−1 ISIs could theoretically encode k−1 independent values. In this study, we demonstrate that such combinatorial coding occurs for retinal bursts. By recording ganglion cell spikes from isolated salamander retinae, we found that intraburst ISIs encode oscillatory light sequences that are much faster than the light intensity modulation encoded by the number of spikes. When a burst has three spikes, the two intraburst ISIs combinatorially encode the amplitude and phase of the oscillatory sequence. Analysis of trial-to-trial variability suggested that intraburst ISIs are regulated by two independent mechanisms responding to orthogonal oscillatory components, one of which is common to bursts with a different number of spikes. Therefore, the retina encodes multiple stimulus features by exploiting all degrees of freedom of burst spike patterns, i.e., the spike number and multiple intraburst ISIs.


2020 ◽  
Vol 16 (3) ◽  
pp. e1007748 ◽  
Author(s):  
Jyotika Bahuguna ◽  
Ajith Sahasranamam ◽  
Arvind Kumar
Keyword(s):  

2020 ◽  
Author(s):  
Toshiyuki Ishii ◽  
Toshihiko Hosoya

AbstractNeurons in various regions of the brain generate spike bursts. While the number of spikes within a burst has been shown to carry information, information coding by interspike intervals (ISIs) is less well understood. In particular, a burst with k spikes has k−1 intraburst ISIs, and these k−1 ISIs could theoretically encode k−1 independent values. In this study, we demonstrate that such combinatorial coding occurs for retinal bursts. By recording ganglion cell spikes from isolated salamander retinae, we found that intraburst ISIs encode oscillatory light sequences that are much faster than the light intensity modulation encoded by the number of spikes. When a burst has three spikes, the two intraburst ISIs combinatorially encode the amplitude and phase of the oscillatory sequence. Analysis of trial-to-trial variability suggested that intraburst ISIs are regulated by two independent mechanisms responding to orthogonal oscillatory components, one of which is common to bursts with different number of spikes. Therefore, the retina encodes multiple stimulus features by exploiting all degrees of freedom of burst spike patterns, i.e., the spike number and multiple intraburst ISIs.Author SummaryNeurons in various regions of the brain generate spike bursts. Bursts are typically composed of a few spikes generated within dozens of milliseconds, and individual bursts are separated by much longer periods of silence (∼hundreds of milliseconds). Recent evidence indicates that the number of spikes in a burst, the interspike intervals (ISIs), and the overall duration of a burst, as well as the timing of burst onset, encode information. However, it remains unknown whether multiple ISIs within a single burst encode multiple independent information contents. Here we demonstrate that such combinatorial ISI coding occurs for spike bursts in the retina. We recorded ganglion cell spikes from isolated salamander retinae stimulated with computer-generated movies. Visual response analyses indicated that multiple ISIs within a single burst combinatorially encode the phase and amplitude of oscillatory light sequences, which are different from the stimulus feature encoded by the spike number. The result demonstrates that the retina encodes multiple stimulus features by exploiting all degrees of freedom of burst spike patterns, i.e., the spike number and multiple intraburst ISIs. Because synaptic transmission in the visual system is highly sensitive to ISIs, the combinatorial ISI coding must have a major impact on visual information processing.


Sign in / Sign up

Export Citation Format

Share Document