Layer-specific serotonergic facilitation of IPSC in layer 2/3 pyramidal neurons of the visual cortex

2012 ◽  
Vol 107 (1) ◽  
pp. 407-416 ◽  
Author(s):  
Hyun-Jong Jang ◽  
Kwang-Hyun Cho ◽  
Sung-Won Park ◽  
Myung-Jun Kim ◽  
Shin Hee Yoon ◽  
...  

Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of long-term synaptic plasticity in layer 2/3 of the visual cortex at the end of its critical period in rats. However, the cellular and molecular mechanisms remain unclear. Since inhibitory influence is crucial in the induction of synaptic plasticity, the effect of 5-HT on inhibitory transmission was investigated in layer 2/3 pyramidal neurons of the primary visual cortex. The amplitude of inhibitory postsynaptic current (IPSC), but not excitatory postsynaptic current, evoked by stimulation of the underlying layer 4, was increased by ∼20% with a bath application of 5-HT. The amplitude of miniature IPSC was also increased by the application of 5-HT, while the paired-pulse ratio was not changed. The facilitating effect of 5-HT on IPSC was mediated by the activation of 5-HT2 receptors. An increase in intracellular Ca2+ via release from inositol 1,4,5-trisphosphate (IP3)-sensitive stores, which was confirmed by confocal Ca2+ imaging, and activation of Ca2+/calmodulin-dependent kinase II (CaMKII) were involved in the facilitation of IPSC by 5-HT. However, 5-HT failed to facilitate IPSC evoked by the stimulation of layer 1. These results suggest that activation of 5-HT2 receptors releases intracellular Ca2+ via IP3-sensitive stores, which facilitates GABAAergic transmission via the activation of CaMKII in layer 2/3 pyramidal neurons of the visual cortex in a layer-specific manner. Thus facilitation of inhibitory transmission by 5-HT might be involved in regulating the information flow and the induction of long-term synaptic plasticity, in a pathway-specific manner.

2019 ◽  
Vol 1712 ◽  
pp. 124-131 ◽  
Author(s):  
Kayoung Joo ◽  
Kwang-Hyun Cho ◽  
Sung-Hee Youn ◽  
Hyun-Jong Jang ◽  
Duck-Joo Rhie

2011 ◽  
Vol 105 (1) ◽  
pp. 347-355 ◽  
Author(s):  
Giao B. Hang ◽  
Yang Dan

Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Alicja Kreczko ◽  
Anubhuthi Goel ◽  
Lihua Song ◽  
Hey-Kyoung Lee

Proper functioning of the visual system depends on maturation of both excitatory and inhibitory synapses within the visual cortex. Considering that perisomatic inhibition is one of the key factors that control the critical period in visual cortex, it is pertinent to understand its regulation by visual experience. To do this, we developed an immunohistochemical method that allows three-dimensional (3D) analysis of the glutamic acid decarboxylase (GAD) 65-positive inhibitory terminals in the visual cortex. Using this method on transgenic mice expressing yellow fluorescence protein (YFP) in a subset of neurons, we found that the number of somatic GAD65-puncta on individual layer 2/3 pyramidal neurons is reduced when mice are dark-reared from birth and reverted to normal levels by re-exposure to light. There was no change in GAD65-puncta volume or intensity. These results support the reorganization of inhibitory circuitry within layer 2/3 of visual cortex in response to changes in visual experience.


Neuroscience ◽  
1999 ◽  
Vol 93 (4) ◽  
pp. 1227-1232 ◽  
Author(s):  
M Volgushev ◽  
T Mittmann ◽  
M Chistiakova ◽  
P Balaban ◽  
U.T Eysel

2021 ◽  
Author(s):  
Ulyana Lalo ◽  
Seyed Rasooli-Nejad ◽  
Alexander Bogdanov ◽  
Lorenzo More ◽  
Wuhyun Koh ◽  
...  

Astrocytes are an active element of brain signalling, capable of release of small molecule gliotransmitters by vesicular and channel-mediated mechanisms. However, specific physiological roles of astroglial exocytosis of glutamate and D-Serine remain controversial. Our data demonstrate that cortical astrocytes can release glutamate and D-Serine by combination of SNARE-dependent exocytosis and non-vesicular mechanisms dependent on TREK-1 and Best1 channels. Astrocyte-derived glutamate and D-serine elicited complex multicomponent phasic response in neocortical pyramidal neurons, which is mediated by extra-synaptic GluN2B receptors. Impairment of either pathway of gliotransmission (in the TREK1 KO, Best-1 KO or dnSNARE mice) strongly affected the NMDAR-dependent long-term synaptic plasticity in the hippocampus and neocortex. Moreover, impairment of astroglial exocytosis in dnSNARE mice led to the deficit in the spatial working memory which was rescued by environmental enrichment. We conclude that synergism between vesicular and non-vesicular gliotransmission is crucial for astrocyte-neuron communication and astroglia-driven regulation of synaptic plasticity and memory.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Daniel J Millman ◽  
Gabriel Koch Ocker ◽  
Shiella Caldejon ◽  
India Kato ◽  
Josh D Larkin ◽  
...  

Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jesús Pérez-Ortega ◽  
Tzitzitlini Alejandre-García ◽  
Rafael Yuste

Neuronal ensembles, coactive groups of neurons found in spontaneous and evoked cortical activity, are causally related to memories and perception, but it still unknown how stable or flexible they are over time. We used two-photon multiplane calcium imaging to track over weeks the activity of the same pyramidal neurons in layer 2/3 of the visual cortex from awake mice and recorded their spontaneous and visually evoked responses. Less than half of the neurons were commonly active across any two imaging sessions. These 'common neurons' formed stable ensembles lasting weeks, but some ensembles were also transient and appeared only in one single session. Stable ensembles preserved ~68 % of their neurons up to 46 days, our longest imaged period, and these 'core' cells had stronger functional connectivity. Our results demonstrate that neuronal ensembles can last for weeks and could, in principle, serve as a substrate for long-lasting representation of perceptual states or memories.


Sign in / Sign up

Export Citation Format

Share Document