scholarly journals Fast and specific: insights into the acquisition and generalization of motor acuity

2019 ◽  
Vol 122 (6) ◽  
pp. 2354-2363
Author(s):  
Shahar Gonda ◽  
Anat Shkedy Rabani ◽  
Naama Horesh ◽  
Lior Shmuelof

Motor acuity is considered to be the outcome of prolonged practice and to involve morphological changes in the motor cortex. We have previously designed a curved pointing task, the arc pointing task (APT), to study motor acuity acquisition, defined as a change in the speed-accuracy tradeoff function (SAF) of the task. Here, we studied the generalization of motor acuity between hands and between tasks (drawing the arc in the opposite direction and with the untrained hand) and the effect of training duration on motor acuity. We report that training-induced motor acuity improvement did not generalize across hands and across tasks performed with the same hand, suggesting a task-specific representation of motor acuity. To our surprise, the largest gains in motor acuity, measured both by changes in SAF and by improvement in multiple kinematic variables, were seen following a short exposure to the task. Our results suggest that motor acuity training-induced improvement is task specific and that motor acuity starts to improve following a very short practice. NEW & NOTEWORTHY We report that training induced motor acuity improvement does not generalize from one hand to another or between movements that are performed with the same effector. Furthermore, significant improvements in acuity were found following a very short exposure to the task (∼20 trials). Therefore, our results suggest that the nervous system has the capacity to rapidly improve motor acuity.

2010 ◽  
Vol 31 (3) ◽  
pp. 130-137 ◽  
Author(s):  
Hagen C. Flehmig ◽  
Michael B. Steinborn ◽  
Karl Westhoff ◽  
Robert Langner

Previous research suggests a relationship between neuroticism (N) and the speed-accuracy tradeoff in speeded performance: High-N individuals were observed performing less efficiently than low-N individuals and compensatorily overemphasizing response speed at the expense of accuracy. This study examined N-related performance differences in the serial mental addition and comparison task (SMACT) in 99 individuals, comparing several performance measures (i.e., response speed, accuracy, and variability), retest reliability, and practice effects. N was negatively correlated with mean reaction time but positively correlated with error percentage, indicating that high-N individuals tended to be faster but less accurate in their performance than low-N individuals. The strengthening of the relationship after practice demonstrated the reliability of the findings. There was, however, no relationship between N and distractibility (assessed via measures of reaction time variability). Our main findings are in line with the processing efficiency theory, extending the relationship between N and working style to sustained self-paced speeded mental addition.


1997 ◽  
Author(s):  
Jeffry S. Kellogg ◽  
Xiangen Hu ◽  
William Marks

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2019
Author(s):  
Salvatore Desantis ◽  
Serena Minervini ◽  
Lorenzo Zallocco ◽  
Bruno Cozzi ◽  
Andrea Pirone

The pig has been increasingly used as a suitable animal model in translational neuroscience. However, several features of the fast-growing, immediately motor-competent cerebral cortex of this species have been adequately described. This study analyzes the cytoarchitecture of the primary motor cortex (M1) of newborn, young and adult pigs (Sus scrofa domesticus). Moreover, we investigated the distribution of the neural cells expressing the calcium-binding proteins (CaBPs) (calretinin, CR; parvalbumin, PV) throughout M1. The primary motor cortex of newborn piglets was characterized by a dense neuronal arrangement that made the discrimination of the cell layers difficult, except for layer one. The absence of a clearly recognizable layer four, typical of the agranular cortex, was noted in young and adult pigs. The morphometric and immunohistochemical analyses revealed age-associated changes characterized by (1) thickness increase and neuronal density (number of cells/mm2 of M1) reduction during the first year of life; (2) morphological changes of CR-immunoreactive neurons in the first months of life; (3) higher density of CR- and PV-immunopositive neurons in newborns when compared to young and adult pigs. Since most of the present findings match with those of the human M1, this study strengthens the growing evidence that the brain of the pig can be used as a potentially valuable translational animal model during growth and development.


Author(s):  
Gerard Derosiere ◽  
David Thura ◽  
Paul Cisek ◽  
Julie Duqué

Humans and other animals often need to balance the desire to gather sensory information (to make the best choice) with the urgency to act, facing a speed-accuracy tradeoff (SAT). Given the ubiquity of SAT across species, extensive research has been devoted to understanding the computational mechanisms allowing its regulation at different timescales, including from one context to another, and from one decision to another. However, animals must frequently change their SAT on even shorter timescales - i.e., over the course of an ongoing decision - and little is known about the mechanisms that allow such rapid adaptations. The present study aimed at addressing this issue. Human subjects performed a decision task with changing evidence. In this task, subjects received rewards for correct answers but incurred penalties for mistakes. An increase or a decrease in penalty occurring halfway through the trial promoted rapid SAT shifts, favoring speeded decisions either in the early or in the late stage of the trial. Importantly, these shifts were associated with stage-specific adjustments in the accuracy criterion exploited for committing to a choice. Those subjects who decreased the most their accuracy criterion at a given decision stage exhibited the highest gain in speed, but also the highest cost in terms of performance accuracy at that time. Altogether, the current findings offer a unique extension of previous work, by suggesting that dynamic changes in accuracy criterion allow the regulation of the SAT within the timescale of a single decision.


Author(s):  
Mohammad Javadi ◽  
Sina Mokhtarzadeh Azar ◽  
Sajjad Azami ◽  
Saeed Shiry Ghidary ◽  
Soroush Sadeghnejad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document