scholarly journals A novel computational model to probe visual search deficits during motor performance

2017 ◽  
Vol 117 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Tarkeshwar Singh ◽  
Julius Fridriksson ◽  
Christopher M. Perry ◽  
Sarah C. Tryon ◽  
Angela Ross ◽  
...  

Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. NEW & NOTEWORTHY Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that deficits integrating spatial planning and working memory underlie abnormal performance in stroke survivors with frontoparietal damage.

Author(s):  
Michelle A. Vincow ◽  
Christopher D. Wickens

Subjects viewed a series of alphanumeric tables containing information regarding the attributes (cost, amount, etc.) of different objects (utilities such as gas and electricity). They answered questions that required them to locate specific pieces of information in the table, perform simple integration between pieces, or complex integration (division, multiplication), and information for questions was either located within a table panel (close separation) or between panels (distant separation). The table was either organized by objects within attributes, or attributes within objects. Table organization had no effect on response time or accuracy. However, accuracy suffered with increased separation, but only for the complex integration questions, a finding that implicates the interference between visual search and the working memory demands of information integration. A computational model of the mental operations required for task performance accounted for 69% of the variance in response time, and provides a useful basis for developing more elaborate models of display layout.


Author(s):  
Angela A. Manginelli ◽  
Franziska Geringswald ◽  
Stefan Pollmann

When distractor configurations are repeated over time, visual search becomes more efficient, even if participants are unaware of the repetition. This contextual cueing is a form of incidental, implicit learning. One might therefore expect that contextual cueing does not (or only minimally) rely on working memory resources. This, however, is debated in the literature. We investigated contextual cueing under either a visuospatial or a nonspatial (color) visual working memory load. We found that contextual cueing was disrupted by the concurrent visuospatial, but not by the color working memory load. A control experiment ruled out that unspecific attentional factors of the dual-task situation disrupted contextual cueing. Visuospatial working memory may be needed to match current display items with long-term memory traces of previously learned displays.


2019 ◽  
Vol 148 (10) ◽  
pp. 1688-1700 ◽  
Author(s):  
Garry Kong ◽  
Daryl Fougnie
Keyword(s):  

2020 ◽  
Author(s):  
Julian Jara-Ettinger ◽  
Paula Rubio-Fernandez

A foundational assumption of human communication is that speakers ought to say as much as necessary, but no more. How speakers determine what is necessary in a given context, however, is unclear. In studies of referential communication, this expectation is often formalized as the idea that speakers should construct reference by selecting the shortest, sufficiently informative, description. Here we propose that reference production is, instead, a process whereby speakers adopt listeners’ perspectives to facilitate their visual search, without concern for utterance length. We show that a computational model of our proposal predicts graded acceptability judgments with quantitative accuracy, systematically outperforming brevity models. Our model also explains crosslinguistic differences in speakers’ propensity to over-specify in different visual contexts. Our findings suggest that reference production is best understood as driven by a cooperative goal to help the listener understand the intended message, rather than by an egocentric effort to minimize utterance length.


2020 ◽  
Author(s):  
B R Geib ◽  
R Cabeza ◽  
M G Woldorff

Abstract While it is broadly accepted that attention modulates memory, the contribution of specific rapid attentional processes to successful encoding is largely unknown. To investigate this issue, we leveraged the high temporal resolution of electroencephalographic recordings to directly link a cascade of visuo-attentional neural processes to successful encoding: namely (1) the N2pc (peaking ~200 ms), which reflects stimulus-specific attentional orienting and allocation, (2) the sustained posterior-contralateral negativity (post-N2pc), which has been associated with sustained visual processing, (3) the contralateral reduction in oscillatory alpha power (contralateral reduction in alpha > 200 ms), which has also been independently related to attentionally sustained visual processing. Each of these visuo-attentional processes was robustly predictive of successful encoding, and, moreover, each enhanced memory independently of the classic, longer-latency, conceptually related, difference-due-to memory (Dm) effect. Early latency midfrontal theta power also promoted successful encoding, with at least part of this influence being mediated by the later latency Dm effect. These findings markedly expand current knowledge by helping to elucidate the intimate relationship between attentional modulations of perceptual processing and effective encoding for later memory retrieval.


Author(s):  
Melissa Treviño ◽  
Xiaoshu Zhu ◽  
Yi Yi Lu ◽  
Luke S. Scheuer ◽  
Eliza Passell ◽  
...  

AbstractWe investigated whether standardized neuropsychological tests and experimental cognitive paradigms measure the same cognitive faculties. Specifically, do neuropsychological tests commonly used to assess attention measure the same construct as attention paradigms used in cognitive psychology and neuroscience? We built on the “general attention factor”, comprising several widely used experimental paradigms (Huang et al., 2012). Participants (n = 636) completed an on-line battery (TestMyBrain.org) of six experimental tests [Multiple Object Tracking, Flanker Interference, Visual Working Memory, Approximate Number Sense, Spatial Configuration Visual Search, and Gradual Onset Continuous Performance Task (Grad CPT)] and eight neuropsychological tests [Trail Making Test versions A & B (TMT-A, TMT-B), Digit Symbol Coding, Forward and Backward Digit Span, Letter Cancellation, Spatial Span, and Arithmetic]. Exploratory factor analysis in a subset of 357 participants identified a five-factor structure: (1) attentional capacity (Multiple Object Tracking, Visual Working Memory, Digit Symbol Coding, Spatial Span), (2) search (Visual Search, TMT-A, TMT-B, Letter Cancellation); (3) Digit Span; (4) Arithmetic; and (5) Sustained Attention (GradCPT). Confirmatory analysis in 279 held-out participants showed that this model fit better than competing models. A hierarchical model where a general cognitive factor was imposed above the five specific factors fit as well as the model without the general factor. We conclude that Digit Span and Arithmetic tests should not be classified as attention tests. Digit Symbol Coding and Spatial Span tap attentional capacity, while TMT-A, TMT-B, and Letter Cancellation tap search (or attention-shifting) ability. These five tests can be classified as attention tests.


Sign in / Sign up

Export Citation Format

Share Document