scholarly journals Retracing your footsteps: developmental insights to spinal network plasticity following injury

2018 ◽  
Vol 119 (2) ◽  
pp. 521-536 ◽  
Author(s):  
C. Jean-Xavier ◽  
S. A. Sharples ◽  
K. A. Mayr ◽  
A. P. Lognon ◽  
P. J. Whelan

During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.

2016 ◽  
Vol 8 (2) ◽  
Author(s):  
Holger Godry ◽  
Mustafa Citak ◽  
Matthias Königshausen ◽  
Thomas A. Schildhauer ◽  
Dominik Seybold

Abstract In case of patients with spinal cord injury and concomitant acromioclavicular (AC) jointdislocation the treatment is challenging, as in this special patient group the function of the shoulder joint is critical because patients depend on the upper limb for mobilization and wheelchair-locomotion. Therefore the goal of this study was to examine, if the treatment of chronic AC-joint dislocation using the Weaver- Dunn procedure augmented with a hook-plate in patients with a spinal cord injury makes early postoperative wheelchair mobilization and the wheelchair transfer with full weightbearing possible. In this case the Weaver- Dunn procedure with an additive hook-plate was performed in a 34-year-old male patient with a complete paraplegia and a posttraumatic chronic AC-joint dislocation. The patient was allowed to perform his wheelchair transfers with full weight bearing on the first postoperative day. The removal of the hook-plate was performed four months after implantation. At the time of follow-up the patient could use his operated shoulder with full range of motion without restrictions in his activities of daily living or his wheel-chair transfers.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Milap Singh Sandhu ◽  
Mai K Elmallah ◽  
Michael A Lane ◽  
Paul J Reier ◽  
John J Greer ◽  
...  

2015 ◽  
Vol 113 (9) ◽  
pp. 3386-3396 ◽  
Author(s):  
Parag Gad ◽  
Roland R. Roy ◽  
Jaehoon Choe ◽  
Jack Creagmile ◽  
Hui Zhong ◽  
...  

The spinal cord contains the circuitry to control posture and locomotion after complete paralysis, and this circuitry can be enabled with epidural stimulation [electrical enabling motor control (eEmc)] and/or administration of pharmacological agents [pharmacological enabling motor control (fEmc)] when combined with motor training. We hypothesized that the characteristics of the spinally evoked potentials after chronic administration of both strychnine and quipazine under the influence of eEmc during standing and stepping can be used as biomarkers to predict successful motor performance. To test this hypothesis we trained rats to step bipedally for 7 wk after paralysis and characterized the motor potentials evoked in the soleus and tibialis anterior (TA) muscles with the rats in a non-weight-bearing position, standing and stepping. The middle responses (MRs) to spinally evoked stimuli were suppressed with either or both drugs when the rat was suspended, whereas the addition of either or both drugs resulted in an overall activation of the extensor muscles during stepping and/or standing and reduced the drag duration and cocontraction between the TA and soleus muscles during stepping. The administration of quipazine and strychnine in concert with eEmc and step training after injury resulted in larger-amplitude evoked potentials [MRs and late responses (LRs)] in flexors and extensors, with the LRs consisting of a more normal bursting pattern, i.e., randomly generated action potentials within the bursts. This pattern was linked to more successful standing and stepping. Thus it appears that selected features of the patterns of potentials evoked in specific muscles with stimulation can serve as effective biomarkers and predictors of motor performance.


2007 ◽  
Vol 206 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Andrew M. Tan ◽  
Jeffrey C. Petruska ◽  
Lorne M. Mendell ◽  
Joel M. Levine

2001 ◽  
Vol 81 (12) ◽  
pp. 1904-1911 ◽  
Author(s):  
Ray D de Leon ◽  
Roland R Roy ◽  
V Reggie Edgerton

Abstract The recovery of stepping ability following a spinal cord injury may be achieved by restoring anatomical connectivity within the spinal cord. However, studies of locomotor recovery in animals with complete spinal cord transection suggest that the adult mammalian spinal cord can acquire the ability to generate stepping after all descending input is eliminated and in the absence of neuronal regeneration. Moreover, rehabilitative gait training has been shown to play a crucial role in teaching existing spinal pathways to generate locomotion and appropriately respond to sensory feedback. This brief review presents evidence that neural networks in the mammalian spinal cord can be modulated pharmacologically and/or with task-specific behavioral training to generate weight-bearing stepping after a spinal injury. Further, the role that spinal learning can play in the management of humans with spinal cord injury is discussed in relation to interventions that are designed primarily to enhance neuronal regeneration.


2021 ◽  
Vol 27 (1) ◽  
pp. 68-74
Author(s):  
Jose R. Vives Alvarado ◽  
Elizabeth R. Felix ◽  
David R. Gater

Persons with spinal cord injury (SCI) are at high risk for developing neurogenic obesity due to muscle paralysis and obligatory sarcopenia, sympathetic blunting, anabolic deficiency, and blunted satiety. Persons with SCI are also at high risk for shoulder, elbow, wrist, and hand injuries, including neuromusculoskeletal pathologies and nociceptive pain, as human upper extremities are poorly designed to facilitate chronic weight-bearing activities, including manual wheelchair propulsion, transfers, self-care, and day-to-day activities. This article reviews current literature on the relationship between obesity and increased body weight with upper extremity overuse injuries, detailing pathology at the shoulders, elbows, and wrists that elicit pain and functional decline and stressing the importance of weight management to preserve function.


Author(s):  
Makamas Kumprou ◽  
Pipatana Amatachaya ◽  
Thanat Sooknuan ◽  
Preeda Arayawichanon ◽  
Thiwabhorn Thaweewannakij ◽  
...  

Background: Walking devices are frequently prescribed for many individuals, including those with spinal cord injury (SCI), to promote their independence. However, without proper screening and follow-up care, the individuals may continue using the same device when their conditions have progressed, that may possibly worsen their walking ability. Objective: This study developed an upper limb loading device (ULLD), and assessed the possibility of using the tool to determine the optimal walking ability of ambulatory participants with SCI who used a walking device daily ([Formula: see text]). Methods: All participants were assessed for their optimal walking ability, i.e., the ability of walking with the least support device or no device as they could do safely and confidently. The participants were also assessed for their amount of weight-bearing on the upper limbs or upper limb loading while walking, amount of weight-bearing on the lower limbs or lower limb loading while stepping of the other leg, and walking performance. Results: The findings indicated that approximately one third of the participants (31%) could progress their walking ability from their current ability, whereby four participants could even walk without a walking device. The amount of upper limb loading while walking, lower limb loading ability, and walking performance were significantly different among the groups of optimal walking ability ([Formula: see text]). Furthermore, the amount of upper limb loading showed negative correlation to the amount of lower limb loading and walking performance ([Formula: see text] to [Formula: see text]0.493, [Formula: see text]). Conclusion: The findings suggest the potential benefit of using the upper limb loading device and the amount of upper limb loading for walking device prescription, and monitoring the change of walking ability among ambulatory individuals with SCI.


2020 ◽  
Vol 36 (5) ◽  
pp. 345-350
Author(s):  
Margaret A. Finley ◽  
Elizabeth Euiler ◽  
Shivayogi V. Hiremath ◽  
Joseph Sarver

Humeral elevation is a critical motion for individuals who use a manual wheelchair given that, in a typical day, wheelchair users reach overhead 5 times more often than able-bodied controls. Kinematic analyses in individuals with chronic spinal cord injury (SCI) have focused on weight-bearing tasks rather than overhead reaching. This technical report presents shoulder movement coordination during overhead reaching in individuals with newly acquired SCI. Eight volunteers with acute SCI and 8 matched, uninjured controls participated. Three-dimensional kinematics were collected during seated, humeral elevation. Scapular and thoracic rotations during humeral elevation were averaged across repetitions. The linear relationship of scapular upward rotation to humeral elevation provided movement coordination analysis. Maximal elevation was reduced in SCI with increased thoracic kyphosis. Medium to large effect sizes were found at each elevation angle, with reduced scapular external rotation, posterior tilt, and increased thoracic kyphosis for those with SCI. The linear relationship occurred later and within a significantly (P = .02) smaller range of humeral elevation in SCI. Altered movement coordination, including a diminished linear association of scapular upward rotation and humeral elevation (scapulohumeral rhythm), is found with reduced maximal elevation and increased thoracic kyphosis during overhead reaching tasks in those with acute SCI.


Sign in / Sign up

Export Citation Format

Share Document