scholarly journals Upper Extremity Overuse Injuries and Obesity After Spinal Cord Injury

2021 ◽  
Vol 27 (1) ◽  
pp. 68-74
Author(s):  
Jose R. Vives Alvarado ◽  
Elizabeth R. Felix ◽  
David R. Gater

Persons with spinal cord injury (SCI) are at high risk for developing neurogenic obesity due to muscle paralysis and obligatory sarcopenia, sympathetic blunting, anabolic deficiency, and blunted satiety. Persons with SCI are also at high risk for shoulder, elbow, wrist, and hand injuries, including neuromusculoskeletal pathologies and nociceptive pain, as human upper extremities are poorly designed to facilitate chronic weight-bearing activities, including manual wheelchair propulsion, transfers, self-care, and day-to-day activities. This article reviews current literature on the relationship between obesity and increased body weight with upper extremity overuse injuries, detailing pathology at the shoulders, elbows, and wrists that elicit pain and functional decline and stressing the importance of weight management to preserve function.

Spinal Cord ◽  
2021 ◽  
Author(s):  
Lorenz Leitner ◽  
Shawna McCallin ◽  
Thomas M. Kessler

AbstractBacterial infections are the leading cause of death in people with a spinal cord injury (SCI). Bacteriophages (phages) are viruses that solely infect and kill bacteria. The idea of using phages to treat bacterial infections, i.e., phage therapy, is very promising and potentially allows a more specific and personalized treatment of bacterial infections than antibiotics. While multi-drug resistant infections affect individuals from the general population, alternative therapeutic options are especially warranted in high-risk populations, such as individuals with SCI. However, more clinical data must be collected before phage therapy can be implemented in clinical practice, with numerous possible, subsequent applications.


2021 ◽  
pp. 1-7
Author(s):  
Allan D. Levi ◽  
Jan M. Schwab

The corticospinal tract (CST) is the preeminent voluntary motor pathway that controls human movements. Consequently, long-standing interest has focused on CST location and function in order to understand both loss and recovery of neurological function after incomplete cervical spinal cord injury, such as traumatic central cord syndrome. The hallmark clinical finding is paresis of the hands and upper-extremity function with retention of lower-extremity movements, which has been attributed to injury and the sparing of specific CST fibers. In contrast to historical concepts that proposed somatotopic (laminar) CST organization, the current narrative summarizes the accumulated evidence that 1) there is no somatotopic organization of the corticospinal tract within the spinal cord in humans and 2) the CST is critically important for hand function. The evidence includes data from 1) tract-tracing studies of the central nervous system and in vivo MRI studies of both humans and nonhuman primates, 2) selective ablative studies of the CST in primates, 3) evolutionary assessments of the CST in mammals, and 4) neuropathological examinations of patients after incomplete cervical spinal cord injury involving the CST and prominent arm and hand dysfunction. Acute traumatic central cord syndrome is characterized by prominent upper-extremity dysfunction, which has been falsely predicated on pinpoint injury to an assumed CST layer that specifically innervates the hand muscles. Given the evidence surveyed herein, the pathophysiological mechanism is most likely related to diffuse injury to the CST that plays a critically important role in hand function.


2016 ◽  
Vol 8 (2) ◽  
Author(s):  
Holger Godry ◽  
Mustafa Citak ◽  
Matthias Königshausen ◽  
Thomas A. Schildhauer ◽  
Dominik Seybold

Abstract In case of patients with spinal cord injury and concomitant acromioclavicular (AC) jointdislocation the treatment is challenging, as in this special patient group the function of the shoulder joint is critical because patients depend on the upper limb for mobilization and wheelchair-locomotion. Therefore the goal of this study was to examine, if the treatment of chronic AC-joint dislocation using the Weaver- Dunn procedure augmented with a hook-plate in patients with a spinal cord injury makes early postoperative wheelchair mobilization and the wheelchair transfer with full weightbearing possible. In this case the Weaver- Dunn procedure with an additive hook-plate was performed in a 34-year-old male patient with a complete paraplegia and a posttraumatic chronic AC-joint dislocation. The patient was allowed to perform his wheelchair transfers with full weight bearing on the first postoperative day. The removal of the hook-plate was performed four months after implantation. At the time of follow-up the patient could use his operated shoulder with full range of motion without restrictions in his activities of daily living or his wheel-chair transfers.


2018 ◽  
pp. 809-836 ◽  
Author(s):  
Rüdiger Rupp ◽  
Martin Rohm ◽  
Matthias Schneiders

For individuals with tetraplegia, restoring limited or missing grasping function is the highest priority. In patients with high Spinal Cord Injury (SCI) and a lack of surgical options, restricted upper extremity function can be improved with the use of neuroprostheses based on Functional Electrical Stimulation (FES). Grasp neuroprostheses with different degrees of complexity and invasiveness exist, although few models are available for routine clinical application. Hybrid systems combining FES with orthoses hold promise for restoring completely lost upper extremity function. Novel user interfaces integrating biosignals from several sources are needed to make full use of the many degrees of freedom of hybrid neuroprostheses. Motor Imagery (MI)-based Brain-Computer Interfaces (BCIs) are an emerging technology that may serve as a valuable adjunct to traditional control interfaces. This chapter provides an overview of the current state of the art of BCI-controlled upper-extremity neuroprostheses and describes the challenges and promises for the future.


Sign in / Sign up

Export Citation Format

Share Document