Contrast Adaptation in a Nonadapting LGN Model

2007 ◽  
Vol 98 (3) ◽  
pp. 1287-1296 ◽  
Author(s):  
Kate S. Gaudry ◽  
Pamela Reinagel

Sensory neurons appear to adapt their gain to match the variance of signals along the dimension they encode, a property we shall call “contrast normalization.” Contrast normalization has been the subject of extensive physiological and theoretical study. We previously found that neurons in the lateral geniculate nucleus (LGN) exhibit contrast normalization in their responses to full-field flickering white-noise stimuli, and that neurons with the strongest contrast normalization best preserved information transmission across a range of contrasts. We have also shown that both of these properties could be reproduced by nonadapting model cells. Here we present a detailed comparison of this nonadapting model to physiological data from the LGN. First, the model cells recapitulated other contrast dependencies of LGN responses: decreasing stimulus contrast resulted in an increase in spike-timing jitter and spike-number variability. Second, we find that the extent of contrast normalization in this model depends on model parameters related to refractoriness and to noise. Third, we show that the model cells exhibit rapid, transient changes in firing rate just after changes in contrast, and that this is sufficient to produce the transient changes in information transmission that have been reported in other neurons. It is known that intrinsic properties of neurons change during contrast adaptation. Nevertheless the model demonstrates that the spiking nonlinearity of neurons can produce many of the temporal aspects of contrast gain control, including normalization to input variance and transient effects of contrast change.

2001 ◽  
Vol 86 (6) ◽  
pp. 2789-2806 ◽  
Author(s):  
Robert C. Liu ◽  
Svilen Tzonev ◽  
Sergei Rebrik ◽  
Kenneth D. Miller

A central theme in neural coding concerns the role of response variability and noise in determining the information transmission of neurons. This issue was investigated in single cells of the lateral geniculate nucleus of barbiturate-anesthetized cats by quantifying the degree of precision in and the information transmission properties of individual spike train responses to full field, binary (bright or dark), flashing stimuli. We found that neuronal responses could be highly reproducible in their spike timing (∼1–2 ms standard deviation) and spike count (∼0.3 ratio of variance/mean, compared with 1.0 expected for a Poisson process). This degree of precision only became apparent when an adequate length of the stimulus sequence was specified to determine the neural response, emphasizing that the variables relevant to a cell's response must be controlled to observe the cell's intrinsic response precision. Responses could carry as much as 3.5 bits/spike of information about the stimulus, a rate that was within a factor of two of the limit the spike train could transmit. Moreover, there appeared to be little sign of redundancy in coding: on average, longer response sequences carried at least as much information about the stimulus as would be obtained by adding together the information carried by shorter response sequences considered independently. There also was no direct evidence found for synergy between response sequences. These results could largely, but not entirely, be explained by a simple model of the response in which one filters the stimulus by the cell's impulse response kernel, thresholds the result at a fairly high level, and incorporates a postspike refractory period.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Karim El-Laithy ◽  
Martin Bogdan

An integration of both the Hebbian-based and reinforcement learning (RL) rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.


1991 ◽  
Vol 87 (1) ◽  
Author(s):  
L.M. M��tt�nen ◽  
J.J. Koenderink

2010 ◽  
Vol 30 (41) ◽  
pp. 13558-13566 ◽  
Author(s):  
D. L. Rathbun ◽  
D. K. Warland ◽  
W. M. Usrey

1998 ◽  
Vol 10 (2) ◽  
pp. 353-371 ◽  
Author(s):  
Paul Mineiro ◽  
David Zipser

The relative contributions of feedforward and recurrent connectivity to the direction-selective responses of cells in layer IVB of primary visual cortex are currently the subject of debate in the neuroscience community. Recently, biophysically detailed simulations have shown that realistic direction-selective responses can be achieved via recurrent cortical interactions between cells with nondirection-selective feedforward input (Suarez et al., 1995; Maex & Orban, 1996). Unfortunately these models, while desirable for detailed comparison with biology, are complex and thus difficult to analyze mathematically. In this article, a relatively simple cortical dynamical model is used to analyze the emergence of direction-selective responses via recurrent interactions. A comparison between a model based on our analysis and physiological data is presented. The approach also allows analysis of the recurrently propagated signal, revealing the predictive nature of the implementation.


2003 ◽  
Vol 15 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Naoki Masuda ◽  
Kazuyuki Aihara

A functional role for precise spike timing has been proposed as an alternative hypothesis to rate coding. We show in this article that both the synchronous firing code and the population rate code can be used dually in a common framework of a single neural network model. Furthermore, these two coding mechanisms are bridged continuously by several modulatable model parameters, including shared connectivity, feedback strength, membrane leak rate, and neuron heterogeneity. The rates of change of these parameters are closely related to the response time and the timescale of learning.


2011 ◽  
Vol 9 (69) ◽  
pp. 689-700 ◽  
Author(s):  
J. Hetherington ◽  
T. Sumner ◽  
R. M. Seymour ◽  
L. Li ◽  
M. Varela Rey ◽  
...  

A computational model of the glucagon/insulin-driven liver glucohomeostasis function, focusing on the buffering of glucose into glycogen, has been developed. The model exemplifies an ‘engineering’ approach to modelling in systems biology, and was produced by linking together seven component models of separate aspects of the physiology. The component models use a variety of modelling paradigms and degrees of simplification. Model parameters were determined by an iterative hybrid of fitting to high-scale physiological data, and determination from small-scale in vitro experiments or molecular biological techniques. The component models were not originally designed for inclusion within such a composite model, but were integrated, with modification, using our published modelling software and computational frameworks. This approach facilitates the development of large and complex composite models, although, inevitably, some compromises must be made when composing the individual models. Composite models of this form have not previously been demonstrated.


2017 ◽  
Author(s):  
Abhyudai Singh

In the nervous system, communication occurs via synaptic transmission where signaling molecules (neurotransmitters) are released by the presynaptic neuron, and they influence electrical activity of another neuron (postsynaptic neuron). The inherent probabilistic release of neurotransmitters is a significant source of noise that critically impacts the timing of spikes (action potential) in the postsynaptic neuron. We develop a stochastic model that incorporates noise mechanisms in synaptic transmission, such as, random docking of neurotransmitter-filled vesicle to a finite number of docking sites, with each site having a probability of vesicle release upon arrival of an action potential. This random, burst-like release of neurotransmitters serves as an input to an integrate-and-fire model, where spikes in the postsynaptic neuron are triggered when its membrane potential reaches a critical threshold for the first time. We derive novel analytical results for the probability distribution function of spike timing, and systematically investigate how underlying model parameters and noise processes regulate variability in the inter-spike times. Interestingly, in some parameter regimes, independent arrivals of action potentials in the presynaptic neuron generate strong dependencies in the spike timing of the postsynaptic neuron. Finally, we argue that probabilistic release of neurotransmitters is not only a source of disturbance, but plays a beneficial role in synaptic information processing.


2000 ◽  
Vol 84 (2) ◽  
pp. 964-974 ◽  
Author(s):  
Milton Pong ◽  
Albert F. Fuchs

Anatomical and physiological data have implicated the pretectal olivary nucleus (PON) as the midbrain relay for the pupillary light reflex in a variety of species. To determine the nature of the discharge of pretectal light reflex relay neurons, we recorded their activity in monkeys that were fixating a stationary spot while a full-field random-dot stimulus was flashed on for 1 s. Based on their discharge patterns, neurons in or near the PON came in two varieties. The most prevalent neuron discharged a burst of spikes 56 ms (on average) after the light came on followed by a sustained rate for the duration of the stimulus (burst-sustained neurons). When the light went off, nearly all neurons (33/34) ceased firing, and then all the neurons with a resting response in the dark ( n = 15) resumed firing. Both the firing rate within the burst and the sustained discharge rate increased with log light intensity and the latency of the burst decreased. The burst and cessation of firing were better aligned with the stimulus occurrence than with the onset of pupillary constriction or dilation. Taken together, these data suggest that burst-sustained neurons respond to the visual stimulus eliciting the pupillary change rather than dictating the metrics of the subsequent pupillary response. Electrical stimulation at the site of four of five burst-sustained neurons elicited pupillary constriction at low stimulus strengths after a latency of ∼100 ms. When the electrode was moved 250 μm away from the burst-sustained neuron, the elicited response disappeared. Reconstructions of the locations of burst-sustained luminance neurons place them in the PON or its immediate vicinity. We suggest that PON burst-sustained neurons constitute the pretectal relay for the pupillary light reflex. A minority of our recorded pretectal neurons discharged a burst of spikes at both light onset and light offset. For most of these transient neurons, neither the burst rate nor the interburst rate was significantly related to light intensity. We conclude that these neurons are not involved in the light reflex but subserve some other pretectal function.


Sign in / Sign up

Export Citation Format

Share Document