scholarly journals Noninvasive brain stimulation can elucidate and interact with the mechanisms underlying motor learning and retention: implications for rehabilitation

2014 ◽  
Vol 111 (5) ◽  
pp. 897-899 ◽  
Author(s):  
Mark R. Hinder ◽  
Paola Reissig ◽  
Hakuei Fujiyama

Seminal work in animals indicates that learning a motor task results in long-term potentiation (LTP) in primary motor cortex (M1) and a subsequent occlusion of LTP induction (Rioult-Pedotti et al. J Neurophysiol 98: 3688–3695, 2007). Using various forms of noninvasive brain stimulation in conjunction with a motor learning paradigm, Cantarero et al. ( J Neurosci 33: 12862–12869, 2013) recently provided novel evidence to support the hypothesis that retention of motor skill is contingent upon this postlearning occlusion.

2012 ◽  
Vol 23 (8) ◽  
pp. 1942-1951 ◽  
Author(s):  
A. Suppa ◽  
A. Biasiotta ◽  
D. Belvisi ◽  
L. Marsili ◽  
S. La Cesa ◽  
...  

2011 ◽  
Vol 4 (3) ◽  
pp. 137-144 ◽  
Author(s):  
Tarek K. Rajji ◽  
Shi-Kai Liu ◽  
Marina V. Frantseva ◽  
Benoit H. Mulsant ◽  
Jessica Thoma ◽  
...  

2019 ◽  
Vol 5 (10) ◽  
pp. eaay0001 ◽  
Author(s):  
Eun Jung Hwang ◽  
Jeffrey E. Dahlen ◽  
Yvonne Yuling Hu ◽  
Karina Aguilar ◽  
Bin Yu ◽  
...  

Motor learning involves reorganization of the primary motor cortex (M1). However, it remains unclear how the involvement of M1 in movement control changes during long-term learning. To address this, we trained mice in a forelimb-based motor task over months and performed optogenetic inactivation and two-photon calcium imaging in M1 during the long-term training. We found that M1 inactivation impaired the forelimb movements in the early and middle stages, but not in the late stage, indicating that the movements that initially required M1 became independent of M1. As previously shown, M1 population activity became more consistent across trials from the early to middle stage while task performance rapidly improved. However, from the middle to late stage, M1 population activity became again variable despite consistent expert behaviors. This later decline in activity consistency suggests dissociation between M1 and movements. These findings suggest that long-term motor learning can disengage M1 from movement control.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Tribikram Thapa ◽  
Siobhan M. Schabrun

Homeostatic plasticity regulates synaptic activity by preventing uncontrolled increases (long-term potentiation) or decreases (long-term depression) in synaptic efficacy. Homeostatic plasticity can be induced and assessed in the human primary motor cortex (M1) using noninvasive brain stimulation. However, the reliability of this methodology has not been investigated. Here, we examined the test-retest reliability of homeostatic plasticity induced and assessed in M1 using noninvasive brain stimulation in ten, right-handed, healthy volunteers on days 0, 2, 7, and 14. Homeostatic plasticity was induced in the left M1 using two blocks of anodal transcranial direct current stimulation (tDCS) applied for 7 min and 5 min, separated by a 3 min interval. To assess homeostatic plasticity, 15 motor-evoked potentials to single-pulse transcranial magnetic stimulation were recorded at baseline, between the two blocks of anodal tDCS, and at 0 min, 10 min, and 20 min follow-up. Test-retest reliability was evaluated using intraclass correlation coefficients (ICCs). Moderate-to-good test-retest reliability was observed for the M1 homeostatic plasticity response at all follow-up time points (0 min, 10 min, and 20 min, ICC range: 0.43–0.67) at intervals up to 2 weeks. The greatest reliability was observed when the homeostatic response was assessed at 10 min follow-up (ICC>0.61). These data suggest that M1 homeostatic plasticity can be reliably induced and assessed in healthy individuals using two blocks of anodal tDCS at intervals of 48 hours, 7 days, and 2 weeks.


2017 ◽  
Vol 128 (9) ◽  
pp. 1547-1552 ◽  
Author(s):  
Matteo Bologna ◽  
Kelly Bertram ◽  
Giulia Paparella ◽  
Claudia Papi ◽  
Daniele Belvisi ◽  
...  

BMJ Open ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. e016566
Author(s):  
Eline C C van Lieshout ◽  
Johanna M A Visser-Meily ◽  
Sebastiaan F W Neggers ◽  
H Bart van der Worp ◽  
Rick M Dijkhuizen

IntroductionMany patients with stroke have moderate to severe long-term sensorimotor impairments, often including inability to execute movements of the affected arm or hand. Limited recovery from stroke may be partly caused by imbalanced interaction between the cerebral hemispheres, with reduced excitability of the ipsilesional motor cortex while excitability of the contralesional motor cortex is increased. Non-invasive brain stimulation with inhibitory repetitive transcranial magnetic stimulation (rTMS) of the contralesional hemisphere may aid in relieving a post-stroke interhemispheric excitability imbalance, which could improve functional recovery. There are encouraging effects of theta burst stimulation (TBS), a form of TMS, in patients with chronic stroke, but evidence on efficacy and long-term effects on arm function of contralesional TBS in patients with subacute hemiparetic stroke is lacking.Methods and analysisIn a randomised clinical trial, we will assign 60 patients with a first-ever ischaemic stroke in the previous 7–14 days and a persistent paresis of one arm to 10 sessions of real stimulation with TBS of the contralesional primary motor cortex or to sham stimulation over a period of 2 weeks. Both types of stimulation will be followed by upper limb training. A subset of patients will undergo five MRI sessions to assess post-stroke brain reorganisation. The primary outcome measure will be the upper limb function score, assessed from grasp, grip, pinch and gross movements in the action research arm test, measured at 3 months after stroke. Patients will be blinded to treatment allocation. The primary outcome at 3 months will also be assessed in a blinded fashion.Ethics and disseminationThe study has been approved by the Medical Research Ethics Committee of the University Medical Center Utrecht, The Netherlands. The results will be disseminated through (open access) peer-reviewed publications, networks of scientists, professionals and the public, and presented at conferences.Trial registration numberNTR6133


1995 ◽  
Vol 67 ◽  
pp. 153
Author(s):  
Keiko Arai ◽  
Yuji Mukasa ◽  
Tadashi Shimada ◽  
Sanae Tomizawa ◽  
Tomokazu Oshima

Sign in / Sign up

Export Citation Format

Share Document