scholarly journals Temporal and spatial tuning of dorsal lateral geniculate nucleus neurons in unanesthetized rats

2016 ◽  
Vol 115 (5) ◽  
pp. 2658-2671 ◽  
Author(s):  
Balaji Sriram ◽  
Philip M. Meier ◽  
Pamela Reinagel

Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions.

2020 ◽  
Author(s):  
Crystal L. Lantz ◽  
Elizabeth M. Quinlan

AbstractThe temporal frequency of sensory stimulation is a decisive factor in the bidirectional plasticity of perceptual detection thresholds. However, surprisingly little is known about how distinct temporal parameters of sensory input differentially impact neuronal, circuit, and perceptual function. Here we demonstrate that brief repetitive visual stimulation is sufficient to induce long-term plasticity of visual responses, with the temporal frequency of the visual stimulus determining the location and generalization of visual response plasticity. Brief repetitive low frequency stimulation (LFS, 2 Hz) is sufficient to induce a visual response potentiation that is exclusively expressed in layer 4 in response to the familiar stimulus. In contrast, brief, repetitive high frequency stimulation (HFS, 20 Hz) suppresses the activity of fast-spiking interneurons and primes ongoing gamma oscillatory rhythms for visually-evoked phase reset. Accordingly, visual stimulation subsequent to HFS induces non-stimulus specific visual response plasticity that is expressed in all cortical layers. The generalized visual response enhancement induced by HFS is paralleled by an increase in visual acuity measured by improved performance in a visual detection task.


Author(s):  
Crystal L Lantz ◽  
Elizabeth M Quinlan

Abstract The temporal frequency of sensory stimulation is a decisive factor in the plasticity of perceptual detection thresholds. However, surprisingly little is known about how distinct temporal parameters of sensory input differentially recruit activity of neuronal circuits in sensory cortices. Here we demonstrate that brief repetitive visual stimulation induces long-term plasticity of visual responses revealed 24 hours after stimulation, and that the location and generalization of visual response plasticity is determined by the temporal frequency of the visual stimulation. Brief repetitive low frequency stimulation (LFS, 2 Hz) is sufficient to induce a visual response potentiation that is expressed exclusively in visual cortex layer 4 and in response to a familiar stimulus. In contrast, brief, repetitive high frequency stimulation (HFS, 20 Hz) is sufficient to induce a visual response potentiation that is expressed in all cortical layers and transfers to novel stimuli. HFS induces a long-term suppression of the activity of fast-spiking interneurons and primes ongoing gamma oscillatory rhythms for phase-reset by subsequent visual stimulation. This novel form of generalized visual response enhancement induced by HFS is paralleled by an increase in visual acuity, measured as improved performance in a visual detection task.


2021 ◽  
Vol 38 ◽  
Author(s):  
H. Shabani ◽  
E. Zrenner ◽  
D.L. Rathbun ◽  
Z. Hosseinzadeh

Abstract Recently, a detailed catalog of 32 retinal ganglion cell (RGC) visual response patterns in mouse has emerged. However, the 10,000 samples required for this catalog—based on fluorescent signals from a calcium indicator dye—are much harder to acquire from the extracellular spike train recordings underlying our bionic vision research. Therefore, we sought to convert spike trains into pseudocalcium signals so that our data could be directly matched to the 32 predefined, calcium signal-based groups. A microelectrode array (MEA) was used to record spike trains from mouse RGCs of 29 retinas. Visual stimuli were adapted from the Baden et al. study; including moving bars, full-field contrast and temporal frequency chirps, and black–white and UV-green color flashes. Spike train histograms were converted into pseudocalcium traces with an OGB-1 convolution kernel. Response features were extracted using sparse principal components analysis to match each RGC to one of the 32 RGC groups. These responses mapped onto of the 32 previously described groups; however, some of the groups remained unmatched. Thus, adaptation of the Baden et al. methodology for MEA recordings of spike trains instead of calcium recordings was partially successful. Different classification methods, however, will be needed to define clear RGC groups from MEA data for our bionic vision research. Nevertheless, others may pursue a pseudocalcium approach to reconcile spike trains with calcium signals. This work will help to guide them on the limitations and potential pitfalls of such an approach.


2014 ◽  
Vol 112 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Xiaodong Chen ◽  
Gregory C. DeAngelis ◽  
Dora E. Angelaki

The ventral intraparietal area (VIP) processes multisensory visual, vestibular, tactile, and auditory signals in diverse reference frames. We recently reported that visual heading signals in VIP are represented in an approximately eye-centered reference frame when measured using large-field optic flow stimuli. No VIP neuron was found to have head-centered visual heading tuning, and only a small proportion of cells had reference frames that were intermediate between eye- and head-centered. In contrast, previous studies using moving bar stimuli have reported that visual receptive fields (RFs) in VIP are head-centered for a substantial proportion of neurons. To examine whether these differences in previous findings might be due to the neuronal property examined (heading tuning vs. RF measurements) or the type of visual stimulus used (full-field optic flow vs. a single moving bar), we have quantitatively mapped visual RFs of VIP neurons using a large-field, multipatch, random-dot motion stimulus. By varying eye position relative to the head, we tested whether visual RFs in VIP are represented in head- or eye-centered reference frames. We found that the vast majority of VIP neurons have eye-centered RFs with only a single neuron classified as head-centered and a small minority classified as intermediate between eye- and head-centered. Our findings suggest that the spatial reference frames of visual responses in VIP may depend on the visual stimulation conditions used to measure RFs and might also be influenced by how attention is allocated during stimulus presentation.


2000 ◽  
Vol 17 (2) ◽  
pp. 283-289 ◽  
Author(s):  
K.E. BINNS ◽  
T.E. SALT

In the rat, the superficial gray layer (SGS) of the superior colliculus receives glutamatergic projections from the contralateral retina and from the visual cortex. A few fibers from the ipsilateral retina also directly innervate the SGS, but most of the ipsilateral visual input is provided by cholinergic afferents from the opposing parabigeminal nucleus (PBG). Thus, visual input carried by cholinergic afferents may have a functional influence on the responses of SGS neurones. When single neuronal extracellular recording and iontophoretic drug application were employed to examine this possibility, cholinergic agonists were found to depress responses to visual stimulation. Lobeline and 1-acetyl-4-methylpiperazine both depressed visually evoked activity and had a tendency to reduce the background firing rate of the neurones. Carbachol depressed the visual responses without any significant effect on the ongoing activity, while the muscarinic receptor selective agonist methacholine increased the background activity of the neurones and reduced their visual responses. Lobeline was chosen for further studies on the role of nicotinic receptors in SGS. Given that nicotinic receptors are associated with retinal terminals in SGS, and that the activation of presynaptic nicotinic receptors normally facilitates transmitter release (in this case glutamate release), the depressant effects of nicotinic agonists are intriguing. However, many retinal afferents contact inhibitory neurones in SGS; thus it is possible that the increase in glutamate release in turn facilitates the liberation of GABA which goes on to inhibit the visual responses. We therefore attempted to reverse the effects of lobeline with GABA receptor antagonists. The depressant effects of lobeline on the visual response could not be reversed by the GABAA antagonist bicuculline, but the GABAB antagonist CGP 35348 reduced the effects of lobeline. We hypothesize that cholinergic drive from the parabigeminal nucleus may activate presynaptic nicotinic receptors on retinal terminals, thereby facilitating the release of glutamate onto inhibitory neurones. Consequently GABA is released, activating GABAB receptors, and thus the ultimate effect of nicotinic receptor activation is to depress visual responses.


1990 ◽  
Vol 63 (2) ◽  
pp. 347-355 ◽  
Author(s):  
A. M. Sillito ◽  
P. C. Murphy ◽  
T. E. Salt ◽  
C. I. Moody

1. We have examined the possibility that N-methyl-D-aspartate (NMDA) receptors may be involved in the visual response of relay cells in the cat dorsal lateral geniculate nucleus (dLGN). The selective NMDA receptor antagonists D-2-amino-5-phosphonovalerate (APV) and 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) have been iontophoretically applied to X and Y cells in the dLGN and their effects on the visual response to a light spot flashed within the receptive field center determined. 2. The antagonist effects were assessed at ejection current levels producing a selective blockade of the responses to iontophoretically applied NMDA with respect to those elicited by the non-NMDA receptor agonists quisqualate and kainate. These selective effects were determined in an experimental paradigm where the visual response and responses to NMDA and the non-NMDA receptor agonists were compared in the same test run. The data refer to a total population of 52 cells (28 X, 24 Y). 3. Application of APV abolished or greatly reduced the visual responses of both X and Y cells. The mean percentage reduction in the visual response for the X cells studied was 59 +/- 10% (SE; n = 7) and for the Y cells 66 +/- 8% (SE; n = 11). Both the early onset transient and the sustained component of the visual response to the flashed stimulus were equally affected. 4. The antagonist CPP produced a similar pattern of effect to APV, substantially reducing or abolishing the visual response in both X and Y cells.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 63 (3) ◽  
pp. 523-538 ◽  
Author(s):  
R. Lal ◽  
M. J. Friedlander

1. The nature and time window of interaction between passive phasic eye movement signals and visual stimuli were studied for dorsal lateral geniculate nucleus (LGNd) neurons in the cat. Extracellular recordings were made from single neurons in layer A of the left LGNd of anesthetized paralyzed cats in response to a normalized visual stimulus presented to the right eye at each of several times of movement of the left eye. The left eye was moved passively at a fixed amplitude and velocity while varying the movement onset time with respect to the visual stimulus onset in a randomized and interleaved fashion. Visual stimuli consisted of square-wave modulated circular spots of appropriate contrast, sign, and size to elicit an optimal excitatory response when placed in the neurons' receptive-field (RF) center. 2. Interactions were analyzed for 78 neurons (33 X-neurons, 43 Y-neurons, and 2 physiologically unclassified neurons) on 25-65 trials of identical visual stimuli for each of eight times of eye movement. 3. Sixty percent (47/78) of the neurons tested had a significant eye movement effect (ANOVA, P less than 0.05) on some aspect of their visual response. Of these 47 neurons, 42 (89%) had a significant (P less than 0.05) effect of an appropriately timed eye movement on the number of action potentials, 36 (77%) had a significant effect on the mean peak firing rate, and 31 (66%) were significantly affected as evaluated by both criteria. 4. The eye movement effect on the neurons' visual responses was primarily facilitatory. Facilitation was observed for 37 (79%) of the affected neurons. For 25 of these 37 neurons (68%), the facilitation was significant (P less than 0.05) as evaluated by both criteria (number of action potentials and mean peak firing rate). Ten (21%) of the affected neurons had their visual response significantly inhibited (P less than 0.05). 5. Sixty percent (46/78) of the neurons were tested for the effect of eye movement on both visually elicited activity (visual stimulus contrast = 2 times threshold) and spontaneous activity (contrast = 0). Eye movement significantly affected the visual response of 23 (50%) of these neurons. However, spontaneous activity was significantly affected for only nine (20%) of these neurons. The interaction of the eye movement and visual signals was nonlinear. 6. Nine of 12 neurons (75%) tested had a directionally selective effect of eye movement on the visual response, with most (8/9) preferring the temporal ward direction.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Author(s):  
Sudha Sharma ◽  
Hemant Kumar Srivastava ◽  
Sharba Bandyopadhyay

AbstractSo far, our understanding on the role of the auditory cortex (ACX) in processing visual information has been limited to infragranular layers of the ACX, which have been shown to respond to visual stimulation. Here, we investigate the neurons in supragranular layers of the mouse ACX using 2-photon calcium imaging. Contrary to previous reports, here we show that more than 20% of responding neurons in layer2/3 of the ACX respond to full-field visual stimulation. These responses occur by both excitation and hyperpolarization. The primary ACX (A1) has a greater proportion of visual responses by hyperpolarization compared to excitation likely driven by inhibitory neurons of the infragranular layers of the ACX rather than local layer 2/3 inhibitory neurons. Further, we found that more than 60% of neurons in the layer 2/3 of A1 are multisensory in nature. We also show the presence of multisensory neurons in close proximity to exclusive auditory neurons and that there is a reduction in the noise correlations of the recorded neurons during multisensory presentation. This is evidence in favour of deep and intricate visual influence over auditory processing. The results have strong implications for decoding visual influences over the early auditory cortical regions.Significance statementTo understand, what features of our visual world are processed in the auditory cortex (ACX), understanding response properties of auditory cortical neurons to visual stimuli is important. Here, we show the presence of visual and multisensory responses in the supragranular layers of the ACX. Hyperpolarization to visual stimulation is more commonly observed in the primary ACX. Multisensory stimulation results in suppression of responses compared to unisensory stimulation and an overall decrease in noise correlation in the primary ACX. The close-knit architecture of these neurons with auditory specific neurons suggests the influence of non-auditory stimuli on the auditory processing.


2001 ◽  
Vol 85 (4) ◽  
pp. 1512-1521 ◽  
Author(s):  
N.S.C. Price ◽  
M. R. Ibbotson

The visual response properties of nondirectional wide-field sensitive neurons in the wallaby pretectum are described. These neurons are called scintillation detectors (SD-neurons) because they respond vigorously to rapid, high contrast visual changes in any part of their receptive fields. SD-neurons are most densely located within a 1- to 2-mm radius from the nucleus of the optic tract, interspersed with direction-selective retinal slip cells. Receptive fields are monocular and cover large areas of the contralateral visual field (30–120°). Response sizes are equal for motion in all directions, and spontaneous activities are similar for all orientations of static sine-wave gratings. Response magnitude increases near linearly with increasing stimulus diameter and contrast. The mean response latency for wide-field, high-contrast motion stimulation was 43.4 ± 9.4 ms (mean ± SD, n = 28). The optimum visual stimuli for SD-neurons are wide-field, low spatial frequency (<0.2 cpd) scenes moving at high velocities (75–500°/s). These properties match the visual input during saccades, indicating optimal sensitivity to rapid eye movements. Cells respond to brightness increments and decrements, suggesting inputs from on and off channels. Stimulation with high-speed, low spatial frequency gratings produces oscillatory responses at the input temporal frequency. Conversely, high spatial frequency gratings give oscillations predominantly at the second harmonic of the temporal frequency. Contrast reversing sine-wave gratings elicit transient, phase-independent responses. These responses match the properties of Y retinal ganglion cells, suggesting that they provide inputs to SD-neurons. We discuss the possible role of SD-neurons in suppressing ocular following during saccades and in the blink or saccade-locked modulation of lateral geniculate nucleus activity to control retino-cortical information flow.


2005 ◽  
Vol 55 (3) ◽  
pp. 245-258 ◽  
Author(s):  
◽  
◽  
◽  

AbstractFlickering light can cause adverse effects in some humans, as can rhythmic spatial patterns of particular frequencies. We investigated whether birds react to the temporal frequency of standard 100 Hz fluorescent lamps and the spatial frequency of the visual surround in the manner predicted by the human literature, by examining their effects on the preferences, behaviour and plasma corticosterone of European starlings (Sturnus vulgaris). We predicted that high frequency lighting (> 30 kHz) and a relatively low spatial frequency on the walls of their cages (0.1 cycle cm−1) would be less aversive than low frequency lighting (100 Hz) and a relatively high spatial frequency (2.5 cycle cm−1). Birds had strong preferences for both temporal and spatial frequencies. These preferences did not always fit with predictions, although there was evidence that 100 Hz was more stressful than 30 kHz lighting, as birds were less active and basal corticosterone levels were higher under 100 Hz lighting. Our chosen spatial frequencies had no overall significant effect on corticosterone levels. Although there are clearly effects of, and interactions between, the frequency of the light and the visual surround on the behaviour and physiology of birds, the pattern of results is not straightforward.


Sign in / Sign up

Export Citation Format

Share Document