scholarly journals Complementary Postsynaptic Activity Patterns Elicited in Olfactory Bulb by Stimulation of Mitral/Tufted and Centrifugal Fiber Inputs to Granule Cells

2007 ◽  
Vol 97 (1) ◽  
pp. 296-306 ◽  
Author(s):  
Nora Laaris ◽  
Adam Puche ◽  
Matthew Ennis

Main olfactory bulb (MOB) granule cells receive spatially segregated glutamatergic synaptic inputs from the dendrites of mitral/tufted cells as well as from the axons of centrifugal fibers (CFFs) originating in olfactory cortical areas. Dendrodendritic synapses from mitral/tufted cells occur on granule cell distal dendrites in the external plexiform layer (EPL), whereas CFFs preferentially target the somata/proximal dendrites of granule cells in the granule cell layer (GCL). In the present study, tract tracing, and recordings of field potentials and voltage-sensitive dye optical signals were used to map activity patterns elicited by activation of these two inputs to granule cells in mouse olfactory bulb slices. Stimulation of the lateral olfactory tract (LOT) produced a negative field potential in the EPL and a positivity in the GCL. CFF stimulation produced field potentials of opposite polarity in the EPL and GCL to those elicited by LOT. LOT-evoked optical signals appeared in the EPL and spread subsequently to deeper layers, whereas CFF-evoked responses appeared in the GCL and then spread superficially. Evoked responses were reduced by N-methyl-d-aspartate (NMDA) receptor antagonists and completely suppressed by AMPA receptor antagonists. Reduction of extracellular Mg2+ enhanced the strength and spatiotemporal extent of the evoked responses. These and additional findings indicate that LOT- and CFF-evoked field potentials and optical signals reflect postsynaptic activity in granule cells, with moderate NMDA and dominant AMPA receptor components. Taken together, these results demonstrate that LOT and CFF stimulation in MOB slices selectively activate glutamatergic inputs to the distal dendrites versus somata/proximal dendrites of granule cells.

1992 ◽  
Vol 68 (1) ◽  
pp. 197-212 ◽  
Author(s):  
K. J. Staley ◽  
I. Mody

1. Stimulation of the perforant path in the outer molecular layer of the adult rat dentate gyrus produced a depolarizing post-synaptic potential (DPSP) in granule cells when recorded using whole-cell techniques in the standard hippocampal slice preparation at 34 degrees C. The postsynaptic currents (PSCs) contributing to the DPSP were analyzed using specific receptor antagonists in current- and voltage-clamp recordings. 2. The DPSP reversal potential was dependent on the intracellular chloride concentration, and the amplitude of the DPSP was increased 55% after perfusion of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline methiodide (BMI). The GABAA receptor-mediated PSC reversed at -66 mV, which was 19 mV positive to the resting membrane potential (-85 mV) but hyperpolarized relative to action potential threshold. At -35 mV, the GABAA PSC had a latency to peak of 12.9 ms after the stimulus and decayed monoexponentially with an average time constant of 23.4 ms. 3. The component of the PSC blocked by the Quis/AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) had a latency to peak of 7.1 ms and decayed monoexponentially with a time constant of 9.9 ms at -35 mV. The N-methyl-D-aspartate (NMDA) receptor-mediated PSC, which was blocked by D-amino-5-phosphonovaleric acid (D-AP5), had a waveform that was similar to the GABAA PSC: the latency to peak was 16 ms and the decay was monoexponential with a time constant of 24.5 ms at -35 mV. 4. The ratio of the peak PSCs mediated by GABAA, Quis/AMPA, and NMDA receptors measured at -35 mV with cesium gluconate electrode solutions was 1:0.2:0.1. This ratio was essentially constant over the range of stimulus intensities that produced compound PSC amplitudes of 80-400 pA. 5. Measured at its reversal potential, the GABAA receptor-mediated postsynaptic conductance (GGABA-A) decreased the peak DPSP amplitude by 35%, shunted 50% of the charge transferred to the soma by the excitatory PSC, and completely inhibited the NMDA receptor-mediated component of the DPSP. 6. Simultaneous stimulation of presynaptic fibers from both the perforant path and interneurons results in a large depolarizing GGABA-A that inhibits the granule cell by shunting the excitatory PSCs. As predicted by models of shunting, the similar kinetics of the GABAA and NMDA PSCs leads to particularly effective inhibition of the NMDA PSC. The more rapid Quis/AMPA PSC is less affected by the GGABA-A, so that granule cell excitation under these conditions is primarily due to Quis/AMPA receptor activation.


1990 ◽  
Vol 64 (3) ◽  
pp. 932-947 ◽  
Author(s):  
D. P. Wellis ◽  
J. W. Scott

1. Intracellular recordings were made from 28 granule cells and 6 periglomerular cells of the rat olfactory bulb during odor stimulation and electrical stimulation of the olfactory nerve layer (ONL) and lateral olfactory tract (LOT). Neurons were identified by injection of horseradish peroxidase (HRP) or biocytin and/or intracellular response characteristics. Odorants were presented in a cyclic sniff paradigm, as reported previously. 2. All interneurons could be activated from a wide number of stimulation sites on the ONL, with distances exceeding their known dendritic spreads and the dispersion of nerve fibers within the ONL, indicating that multisynaptic pathways must also exist at the glomerular region. All types of interneurons also responded to odorant stimulation, showing a variety of responses. 3. Granule cells responded to electrical stimulation of the LOT and ONL as reported previously. However, intracellular potential, excitability, and conductance analysis suggested that the mitral cell-mediated excitatory postsynaptic potential (EPSP) is followed by a long inhibitory postsynaptic potential (IPSP). An early negative potential, before the EPSP, was also observed in every granule cell and correlated with component I of the extracellular LOT-induced field potential. We have interpreted this negativity as a "field effect," that may be diagnostic of granule cells. 4. Most granule cells exhibited excitatory responses to odorant stimulation. Odors could produce spiking responses that were either nonhabituating (response to every sniff) or rapidly habituating (response to first sniff only). Other granule cells, while spiking to electrical stimulation, showed depolarizations that did not evoke spikes to odor stimulation. These depolarizations were transient with each sniff or sustained across a series of sniffs. These physiological differences to odor stimulation correlated with granule cell position beneath the mitral cell layer for 12 cells, suggesting that morphological subtypes of granule cells may show physiological differences. Some features of the granule cell odor responses seem to correlate with some of the features we have observed in mitral/tufted cell intracellular recordings. Only one cell showed inhibition to odors. 5. Periglomerular (PG) cells showed a response to ONL stimulation that was unlike that found in other olfactory bulb neurons. There was a long-duration hyperpolarization after a spike and large depolarization or burst of spikes (20-30 ms in duration). Odor stimulation produced simple bursts of action potentials, Odor stimulation produced simple bursts of action potentials, suggesting that PG cells may simply follow input from the olfactory nerve.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (1) ◽  
pp. 345-355 ◽  
Author(s):  
Changping Jia ◽  
Wei R. Chen ◽  
Gordon M. Shepherd

Jia, Changping, Wei R. Chen, and Gordon M. Shepherd. Synaptic organization and neurotransmitters in the rat accessory olfactory bulb. J. Neurophysiol. 81: 345–355, 1999. The accessory olfactory bulb (AOB) is the first relay station in the vomeronasal system and may play a critical role in processing pheromone signals. The AOB shows similar but less distinct lamination compared with the main olfactory bulb (MOB). In this study, synaptic organization of the AOB was analyzed in slice preparations from adult rats by using both field potential and patch-clamp recordings. Stimulation of the vomeronasal nerve (VN) evoked field potentials that showed characteristic patterns in different layers of the AOB. Current source density (CSD) analysis of the field potentials revealed spatiotemporally separated loci of inward current (sinks) that represented sequential activation of different neuronal components: VN activity (period I), synaptic excitation of mitral cell apical dendrites (period II), and activation of granule cells by mitral cell basal dendrites (period III). Stimulation of the lateral olfactory tract also evoked field potentials in the AOB, which indicated antidromic activation of the mitral cells (period I and II) followed by activation of granule cells (period III). Whole cell patch recordings from mitral and granule cells of the AOB supported that mitral cells are excited by VN terminals and subsequently activate granule cells through dendrodendritic synapses. Both CSD analysis and patch recordings provided evidence that glutamate is the neurotransmitter at the vomeronasal receptor neuron; mitral cell synapses and both NMDA and non-NMDA receptors are involved. We also demonstrated electrophysiologically that reciprocal interaction between mitral and granule cells in the AOB is through the dendrodendritic reciprocal synapses. The neurotransmitter at the mitral-to-granule synapses is glutamate and at the granule-to-mitral synapse is γ-aminobutyric acid. The synaptic interactions among receptor cell terminals, mitral cells, and granule cells in the AOB are therefore similar to those in the MOB, suggesting that processing of chemosensory information in the AOB shares similarities with that in the MOB.


2009 ◽  
Vol 101 (4) ◽  
pp. 2052-2061 ◽  
Author(s):  
Ambarish S. Ghatpande ◽  
Alan Gelperin

The mammalian olfactory bulb receives multiple modulatory inputs, including a cholinergic input from the basal forebrain. Understanding the functional roles played by the cholinergic input requires an understanding of the cellular mechanisms it modulates. In an in vitro olfactory bulb slice preparation we demonstrate cholinergic muscarinic modulation of glutamate release onto granule cells that results in γ-aminobutyric acid (GABA) release onto mitral/tufted cells. We demonstrate that the broad-spectrum cholinergic agonist carbachol triggers glutamate release from mitral/tufted cells that activates both AMPA and NMDA receptors on granule cells. Activation of the granule cell glutamate receptors leads to calcium influx through voltage-gated calcium channels, resulting in spike-independent, asynchronous GABA release at reciprocal dendrodendritic synapses that granule cells form with mitral/tufted cells. This cholinergic modulation of glutamate release persists through much of postnatal bulbar development, suggesting a functional role for cholinergic inputs from the basal forebrain in bulbar processing of olfactory inputs and possibly in postnatal development of the olfactory bulb.


2021 ◽  
Vol 15 ◽  
Author(s):  
Fu-Wen Zhou ◽  
Adam C. Puche

Olfactory bulb and higher processing areas are synaptically interconnected, providing rapid regulation of olfactory bulb circuit dynamics and sensory processing. Short-term plasticity changes at any of these synapses could modulate sensory processing and potentially short-term sensory memory. A key olfactory bulb circuit for mediating cortical feedback modulation is granule cells, which are targeted by multiple cortical regions including both glutamatergic excitatory inputs and GABAergic inhibitory inputs. There is robust endocannabinoid modulation of excitatory inputs to granule cells and here we explored whether there was also endocannabinoid modulation of the inhibitory cortical inputs to granule cells. We expressed light-gated cation channel channelrhodopsin-2 (ChR2) in GABAergic neurons in the horizontal limb of the diagonal band of Broca (HDB) and their projections to granule cells in olfactory bulb. Selective optical activation of ChR2 positive axons/terminals generated strong, frequency-dependent short-term depression of GABAA-mediated-IPSC in granule cells. As cannabinoid type 1 (CB1) receptor is heavily expressed in olfactory bulb granule cell layer (GCL) and there is endogenous endocannabinoid release in GCL, we investigated whether activation of CB1 receptor modulated the HDB IPSC and short-term depression at the HDB→granule cell synapse. Activation of the CB1 receptor by the exogenous agonist Win 55,212-2 significantly decreased the peak amplitude of individual IPSC and decreased short-term depression, while blockade of the CB1 receptor by AM 251 slightly increased individual IPSCs and increased short-term depression. Thus, we conclude that there is tonic endocannabinoid activation of the GABAergic projections of the HDB to granule cells, similar to the modulation observed with glutamatergic projections to granule cells. Modulation of inhibitory synaptic currents and frequency-dependent short-term depression could regulate the precise balance of cortical feedback excitation and inhibition of granule cells leading to changes in granule cell mediated inhibition of olfactory bulb output to higher processing areas.


2000 ◽  
Vol 84 (5) ◽  
pp. 2380-2389 ◽  
Author(s):  
Jeremy L. Hardison ◽  
Maxine M. Okazaki ◽  
J. Victor Nadler

The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in many persons with temporal lobe epilepsy. The new connections among granule cells provide a novel mechanism of synchronization that could enhance the participation of these cells in seizures. Despite the presence of robust recurrent mossy fiber growth, orthodromic or antidromic activation of granule cells usually does not evoke repetitive discharge. This study tested the ability of modestly elevated [K+]o, reduced GABAA receptor-mediated inhibition and frequency facilitation to unmask the effect of recurrent excitation. Transverse slices of the caudal hippocampal formation were prepared from pilocarpine-treated rats that either had or had not developed status epilepticus with subsequent recurrent mossy fiber growth. During superfusion with standard medium (3.5 mM K+), antidromic stimulation of the mossy fibers evoked epileptiform activity in 14% of slices with recurrent mossy fiber growth. This value increased to ∼50% when [K+]o was raised to either 4.75 or 6 mM. Addition of bicuculline (3 or 30 μM) to the superfusion medium did not enhance the probability of evoking epileptiform activity but did increase the magnitude of epileptiform discharge if such activity was already present. (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (1 μM), which selectively activates type II metabotropic glutamate receptors present on mossy fiber terminals, strongly depressed epileptiform responses. This result implies a critical role for the recurrent mossy fiber pathway. No enhancement of the epileptiform discharge occurred during repetitive antidromic stimulation at frequencies of 0.2, 1, or 10 Hz. In fact, antidromically evoked epileptiform activity became progressively attenuated during a 10-Hz train. Antidromic stimulation of the mossy fibers never evoked epileptiform activity in slices from control rats under any condition tested. These results indicate that even modest changes in [K+]o dramatically affect granule cell epileptiform activity supported by the recurrent mossy fiber pathway. A small increase in [K+]o reduces the amount of recurrent mossy fiber growth required to synchronize granule cell discharge. Block of GABAA receptor-mediated inhibition is less efficacious and frequency facilitation may not be a significant factor.


2015 ◽  
Vol 114 (6) ◽  
pp. 3177-3200 ◽  
Author(s):  
Guoshi Li ◽  
Christiane Linster ◽  
Thomas A. Cleland

Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.


1999 ◽  
Vol 81 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Vassiliki Aroniadou-Anderjaska ◽  
Matthew Ennis ◽  
Michael T. Shipley

Aroniadou-Anderjaska, Vassiliki, Matthew Ennis, and Michael T. Shipley. Current-source density analysis in the rat olfactory bulb: laminar distribution of kainate/AMPA- and NMDA-receptor-mediated currents. J. Neurophysiol. 81: 15–28, 1999. The one-dimensional current-source density method was used to analyze laminar field potential profiles evoked in rat olfactory bulb slices by stimulation in the olfactory nerve (ON) layer or mitral cell layer (MCL) and to identify the field potential generators and the characteristics of synaptic activity in this network. Single pulses to the ON evoked a prolonged (≥400 ms) sink (S1ON) in the glomerular layer (GL) with corresponding sources in the external plexiform layer (EPL) and MCL and a relatively brief sink (S2ON) in the EPL, reversing in the internal plexiform and granule cell layers. These sink/source distributions suggested that S1ON and S2ON were generated in the apical dendrites of mitral/tufted cells and granule cells, respectively. The kainate/AMPA-receptor antagonist CNQX (10 μM) reduced the early phase of S1ON, blocked S2ON, and revealed a low amplitude, prolonged sink at the location of S2ON in the EPL. Reduction of Mg2+, in CNQX, enhanced both the CNQX-resistant component of S1ON and the EPL sink. This EPL sink reversed below the MCL, suggesting it was produced in granule cells. The NMDA-receptor antagonist APV (50 μM) reversibly blocked the CNQX-resistant field potentials in all layers. Single pulses were applied to the MCL to antidromically depolarize the dendrites of mitral/tufted cells. In addition to synaptic currents of granule cells, a low-amplitude, prolonged sink (S1mcl) was evoked in the GL. Corresponding sources were in the EPL, suggesting that S1mcl was generated in the glomerular dendritic tufts of mitral/tufted cells. Both S1mcl and the granule cell currents were nearly blocked by CNQX (10 μM) but enhanced by subsequent reduction of Mg2+; these currents were blocked by APV. S1mcl also was enhanced by γ-aminobutyric acid-A-receptor antagonists applied to standard medium; this enhancement was reduced by APV. ON activation produces prolonged excitation in the apical dendrites of mitral/tufted cells, via kainate/AMPA and NMDA receptors, providing the opportunity for modulation and integration of sensory information at the first level of synaptic processing in the olfactory system. Granule cells respond to input from the lateral dendrites of mitral/tufted cells via both kainate/AMPA and NMDA receptors; however, in physiological concentrations of extracellular Mg2+, NMDA-receptor activation does not contribute significantly to the granule cell responses. The glomerular sink evoked by antidromic depolarization of mitral/tufted cell dendrites suggests that glutamate released from the apical dendrites of mitral/tufted cells may excite the same or neighboring mitral/tufted cell dendrites.


1992 ◽  
Vol 68 (5) ◽  
pp. 1603-1612 ◽  
Author(s):  
H. Tamura ◽  
T. Tsumoto ◽  
Y. Hata

1. To see whether long-lasting changes in synaptic efficacy are induced in the developing visual cortex (VC), field potentials evoked by test stimulation given alternatively to each of the optic nerves (ONs) were recorded from VC of kittens ranging in age from 4 to 8 wk. In some experiments, field potentials were recorded simultaneously from the dorsal lateral geniculate nucleus (LGN) in addition to VC. 2. Tetanic stimulation was applied to one of the ONs for 1-60 min at 5 Hz. Homosynaptic potentiation of cortical responses, defined as an increase lasting > 2.5 h in the cortical field potential evoked by test stimulation of the ON that was tetanized, was induced without any changes in LGN responses in 3 of the 12 kittens tested. Heterosynaptic depression, defined as a decrease lasting > 0.5 h in the field potential evoked by stimulation of the ON that was not tetanized, was also induced in two of those three kittens. 3. To elucidate a role of inputs originating from spontaneous activity of retinal ganglion cells in induction of potentiation and depression in the cortex, tetrodotoxin (TTX) was injected into both eyes of 11 kittens. After we confirmed the suppression of retinal activity by TTX, tetanic stimulation was applied to ON. Homosynaptic potentiation of cortical responses was induced in 6 of the 11 kittens, and the ratio of the mean amplitude of posttetanic responses to that of pretetanic responses for the 11 kittens was on average larger than that for the 12 control kittens. Heterosynaptic depression was not observed in any of the 11 kittens. 4. To see a role of postsynaptic activity in induction of potentiation and depression, gamma-aminobutyric acid (GABA) was applied continuously to the VC by an infusion pump in 10 kittens. Tetanic stimulation was given to ON while cortical activities were suppressed by GABA. After recovery of cortical activities, homosynaptic depression was found to be induced in 3 of the 10 kittens, but homosynaptic potentiation was not observed at all. The ratio of amplitude of posttetanic to pretetanic responses at the tetanized side for the 10 kittens was on average smaller than that for the 11 TTX-injected kittens. 5. These results can be accounted for by the modified covariance model in which the relation of postsynaptic activity and direction of changes in synaptic efficacy is formulated.(ABSTRACT TRUNCATED AT 400 WORDS)


1975 ◽  
Vol 38 (1) ◽  
pp. 167-184 ◽  
Author(s):  
S. A. Deadwyler ◽  
J. R. West ◽  
C. W. Cotman ◽  
G. S. Lynch

The electrophysiological properties of the commissural projections to the dentate gyrus of the rat were investigated using extracellular field-potential and unit-recording techniques. The following conclusions with respect to those investigations were obtained: 1) The CA3c/CA4 region of the contralateral hippocampus proved to be the most effective site for eliciting the commissural field potentials in the dentate gyrus dorsal and ventral leaves. 2) The location of the short-latency negative field potential in the molecular layer of the dentate gyrus was restricted to a region 50-100 mum distal to the granule cell layers corresponding to the inner one-third of the granule cell dendrites. 3) The negative field potential proved to satisfy a number of criteria for the extracellular representation of the summed EPSPs of synchronously activated granule cells. 4) The excitatory nature of the commissural projections to the dentate was confirmed by the short-latency driving of units recorded from the granule cell layers. 5) A comparison of both commissural and entorhinal cortical stimulation procedures showed the field potentials elicited by the different convergent anatomical systems to be localized within different regions of the dentate molecular layer. 6) The distribution of commissural potentials along the septotemporal axis of the dentate gyrus indicated that stimulation sites homotopic to the recording electrode in the contralateral CA3c/CA4 region were the most effective in eliciting these potentials. 7) These findings were discussed with reference to the mode of activation of the dentate granule cells by the commissural system with specific comparison to the larger and apparently more powerful projections from the entorhinal cortex.


Sign in / Sign up

Export Citation Format

Share Document