Functional Organization of Ganglion Cells in the Salamander Retina

2006 ◽  
Vol 95 (4) ◽  
pp. 2277-2292 ◽  
Author(s):  
Ronen Segev ◽  
Jason Puchalla ◽  
Michael J. Berry

Recently, we reported a novel technique for recording all of the ganglion cells in a retinal patch and showed that their receptive fields cover visual space roughly 60 times over in the tiger salamander. Here, we carry this analysis further and divide the population of ganglion cells into functional classes using quantitative clustering algorithms that combine several response characteristics. Using only the receptive field to classify ganglion cells revealed six cell types, in agreement with anatomical studies. Adding other response measures served to blur the distinctions between these cell types rather than resolve further classes. Only the biphasic off type had receptive fields that tiled the retina. Even when we attempted to split these classes more finely, ganglion cells with almost identical functional properties were found to have strongly overlapping spatial receptive fields. A territorial spatial organization, where ganglion cell receptive fields tend to avoid those of other cells of the same type, was only found for the biphasic off cell. We further studied the functional segregation of the ganglion cell population by computing the amount of visual information shared between pairs of cells under natural movie stimulation. This analysis revealed an extensive mixing of visual information among cells of different functional type. Together, our results indicate that the salamander retina uses a population code in which every point in visual space is represented by multiple neurons with subtly different visual sensitivities.

2004 ◽  
Vol 21 (2) ◽  
pp. 157-166 ◽  
Author(s):  
JIAN ZHANG ◽  
ZHUO YANG ◽  
SAMUEL M. WU

In the present study, using double- or triple-label immunocytochemistry in conjunction with confocal microscopy, we aimed to examine the population and distribution of photoreceptors, GABAergic and glycinergic amacrine cells, and ganglion cells, which are basic but important parameters for studying the structure–function relationship of the salamander retina. We found that the outer nuclear layer (ONL) contained 82,019 ± 3203 photoreceptors, of which 52% were rods and 48% were cones. The density of photoreceptors peaked at ∼8000 cells/mm2 in the ventral and dropped to ∼4000 cells/mm2 in the dorsal retina. In addition, the rod/cone ratio was less than 1 in the central retina but larger than 1 in the periphery. Moreover, in the proximal region of the inner nuclear layer (INL3), the total number of cells was 50,576 ± 8400. GABAergic and glycinergic amacrine cells made up approximately 78% of all cells in this layer, including 43% GABAergic, 32% glycinergic, and 3% GABA/glycine colocalized amacrine cells. The density of these amacrine cells was ∼6500 cells/mm2 in the ventral and ∼3200 cells/mm2 in the dorsal area. The ratio of GABAergic to glycinergic amacrine cells was larger than 1. Furthermore, in the ganglion cell layer (GCL), among a total of 36,007 ± 2010 cells, ganglion cells accounted for 65.7 ± 1.5% of the total cells, whereas displaced GABAergic and glycinergic amacrine cells comprised about 4% of the cells in this layer. The ganglion cell density was ∼1800 cells/mm2 in the ventral and ∼600 cells/mm2 in the dorsal retina. Our data demonstrate that all three major cell types are not uniformly distributed across the salamander retina. Instead, they exhibit a higher density in the ventral than in the dorsal retina and their spatial arrangement is associated with the retinal topography. These findings provide a basic anatomical reference for the electrophysiological study of this species.


Author(s):  
Alexandra Kling ◽  
Alex R. Gogliettino ◽  
Nishal P. Shah ◽  
Eric G. Wu ◽  
Nora Brackbill ◽  
...  

ABSTRACTThe functional organization of diverse retinal ganglion cell (RGC) types, which shapes the visual signal transmitted to the brain, has been examined in many species. The unique spatial, temporal, and chromatic properties of the numerically dominant RGC types in macaque monkey retina are presumed to most accurately model human vision. However, the functional similarity between RGCs in macaques and humans has only begun to be tested, and recent work suggests possible differences. Here, the properties of the numerically dominant human RGC types were examined using large-scale multi-electrode recordings with fine-grained visual stimulation in isolated retina, and compared to results from dozens of recordings from macaque retina using the same experimental methods and conditions. The properties of four major human RGC types -- ON-parasol, OFF-parasol, ON-midget, and OFF-midget -- closely paralleled those of the same macaque RGC types, including the spatial and temporal light sensitivity, precisely coordinated mosaic organization of receptive fields, ON-OFF asymmetries, spatial response nonlinearity, and sampling of photoreceptor inputs over space. Putative smooth monostratified cells and polyaxonal amacrine cells were also identified based on similarities to cell types previously identified in macaque retina. The results suggest that recently proposed differences between human and macaque RGCs probably reflect experimental differences, and that the macaque model provides an accurate picture of human RGC function.


1977 ◽  
Vol 40 (1) ◽  
pp. 26-43 ◽  
Author(s):  
K. Naka

1. The basic organization of the biphasic (or concentric) receptive field is established in the bipolar cells as the result of an interaction between two signals, one local representing the activity of a small number of receptors, and the other integrating (19, 20) or global (28) coming from the S space or a lamina formed by the horizontal cells (8, 14, 22, 29). 2. Bipolar-ganglion cell pairs are segregated into two types; A (on center) and B (off center) pairs. A depolarization of a bipolar cell produces spike discharges from ganglion cells of the same type and a hyperpolarization depresses their discharges. I haven't detected any cross talk between the types A and B pairs. Bipolar and ganglion cells must be interfaced by the classical chemical synapses, the only such kind in the catfish retina. 3. Horizontal and type N neurons form two lateral transmission systems, one distal and the other proximal (19, 20). Signals in the lateral systems are shared by the two receptive-field types and are not excitatory or inhibitory in themselves; it is incumbent upon the postsynaptic neurons to decide the polarity of the synaptic transmission. The horizontal cell participates directly in the formation of biphasic receptive fields of bipolar cells by providing their surrounding, whereas type N neuron seems to modify the receptive-field organization established in the bipolar cells. 4. Type N neurons are amacrine cells because they do not produce spike discharges (2, 18, 21) and because they influence the activity of both A and B receptive fields. 5. The function of the type C neuron is as unique as its structure (21) and is not fully clear as yet. It is not a conventional amacrine cell as the type N appears to be, nor is it a classical ganglion cell which forms either a type A or B receptive field (2). 6. Type Y neurons are a class of ganglion cells which forms either a type A or B receptive field.


1991 ◽  
Vol 7 (1-2) ◽  
pp. 155-169 ◽  
Author(s):  
Leo Peichl

AbstractA specific morphological class of ganglion cell, the alpha cell, was first defined in cat retina. Alpha cells have since been found in a wide range of mammalian retinae, including several orders of placental and marsupial mammals. Characteristically, they have the largest somata and a large dendritic field with a typical branching pattern. They occur as inner and outer stratifying subpopulations, presumably corresponding to ON-center and OFF-center receptive fields. In all species, alpha cells account for less than 10% of the ganglion cells, their somata are regularly spaced, and their dendritic fields evenly and economically cover the retina in a mosaic-like fashion. The morphology of alpha cells and many features, both of single cells and of the population, are conserved across species with different habitats and life-styles. This suggests that alpha cells are a consistent obligatory ganglion cell type in every mammalian retina and probably subserve some fundamental task(s) in visual performance.Some general rules about the construction principles of ganglion cell classes are inferred from the alpha cells, stressing the importance of population parameters for the definition of a class. The principle, that a functionally and morphologically homogeneous population should have a regular arrangement and a complete and even coverage of the retina to perform its part in image processing at each retinal location, is especially evident across species and across ganglion cell types.


1997 ◽  
Vol 78 (4) ◽  
pp. 2048-2060 ◽  
Author(s):  
Steven H. Devries ◽  
Denis A. Baylor

DeVries, Steven H. and Denis A. Baylor. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J. Neurophysiol. 78: 2048–2060, 1997. The arrangement of ganglion cell receptive fields on the retinal surface should constrain several properties of vision, including spatial resolution. Anatomic and physiological studies on the mammalian retina have shown that the receptive fields of several types of ganglion cells tile the retinal surface, with the degree of receptive field overlap apparently being similar for the different classes. It has been difficult to test the generality of this arrangement, however, because it is hard to sample many receptive fields in the same preparation with conventional single-unit recording. In our experiments, the response properties and receptive fields of up to 80 neighboring ganglion cells in the isolated rabbit retina were characterized simultaneously by recording with a multielectrode array. The cells were divided into 11 classes on the basis of their characteristic light responses and the temporal structures of their impulse trains. The mosaic arrangement of receptive fields for cells of a given class was examined after the spatial profile of each receptive field was fitted with a generalized Gaussian surface. For eight cell classes the mosaic arrangement was similar: the profiles of neighboring cells approached each other at the 1-σ border. Thus field centers were 2 σ apart. The layout of fields for the remaining three classes was not well characterized because the fields were poorly fitted by a single Gaussian or because the cells responded selectively to movement. The 2-σ center-center spacing may be a general principle of functional organization that minimizes spatial aliasing and confers a uniform spatial sensitivity on the ganglion cell population.


2020 ◽  
Vol 6 (1) ◽  
pp. 261-285
Author(s):  
Liang Liang ◽  
Chinfei Chen

Visual information is encoded in distinct retinal ganglion cell (RGC) types in the eye tuned to specific features of the visual space. These streams of information project to the visual thalamus, the first station of the image-forming pathway. In the mouse, this connection between RGCs and thalamocortical neurons, the retinogeniculate synapse, has become a powerful experimental model for understanding how circuits in the thalamus are constructed to process these incoming lines of information. Using modern molecular and genetic tools, recent studies have suggested a more complex circuit organization than was previously understood. In this review, we summarize the current understanding of the structural and functional organization of the retinogeniculate synapse in the mouse. We discuss a framework by which a seemingly complex circuit can effectively integrate and parse information to downstream stations of the visual pathway. Finally, we review how activity and visual experience can sculpt this exquisite connectivity.


2008 ◽  
Vol 25 (2) ◽  
pp. 215-220 ◽  
Author(s):  
JOHN D. PETTIGREW ◽  
PAUL R. MANGER

AbstractA single right retina from a black rhinoceros was whole mounted, stained and analyzed to determine the visual resolution of the rhinoceros, an animal with reputedly poor eyesight. A range of small (15-μm diameter) to large (100-μm diameter) ganglion cell types was seen across the retina. We observed two regions of high density of retinal ganglion cells at either end of a long, but thin, horizontal streak. The temporal specialization, which receives light from the anterior visual field, exhibited a ganglion cell density of approximately 2000/mm2, while the nasal specialization exhibited a density of approximately 1500/mm2. The retina exhibited a ganglion cell density bias toward the upper half, especially so, the upper temporal quadrant, indicating that the rhinoceros would be processing visual information from the visual field below the anterior horizon for the most part. Our calculations indicate that the rhinoceros has a visual resolution of 6 cycles/degree. While this resolution is one-tenth that of humans (60 cycles/deg) and less than that of the domestic cat (9 cycles/deg), it is comparable to that of the rabbit (6 cycles/deg), and exceeds that seen in a variety of other mammals including seals, dolphins, microbats, and rats. Thus, the reputation of the rhinoceros as a myopic, weakly visual animal is not supported by our observations of the retina. We calculate that the black rhinoceros could readily distinguish a 30 cm wide human at a distance of around 200 m given the appropriate visual background.


2019 ◽  
Author(s):  
Niansheng Ju ◽  
Yang Li ◽  
Fang Liu ◽  
Hongfei Jiang ◽  
Stephen L. Macknik ◽  
...  

The integration of synaptic inputs onto dendrites provides the basis for computation within individual neurons. Whereas recent studies have begun to outline the spatial organization of synaptic inputs on individual neurons, the underlying principles related to the specific neural functions is not well known. Here we performed two-photon dendritic imaging with genetically-encoded glutamate sensor in awake monkeys, and successfully mapped the excitatory synaptic inputs on dendrites of individual V1 neurons with high spatial and temporal resolution. We found that although synaptic inputs on dendrites were functionally clustered by feature, they were highly scattered in multidimensional feature space, providing a potential substrate of local feature integration on dendritic branches. We also found that nearly all individual neurons received both abundant orientation-selective and color-selective inputs. Furthermore, we found apical dendrites received more diverse inputs than basal dendrites, with larger receptive fields, and relatively longer response latencies, suggesting a specific apical role in integrating feedback in visual information processing.


2018 ◽  
Author(s):  
Colleen E. Rhoades ◽  
Nishal P. Shah ◽  
Michael B. Manookin ◽  
Nora Brackbill ◽  
Alexandra Kling ◽  
...  

SummaryThe visual functions of the diverse retinal ganglion cell types in the primate retina, and the parallel visual pathways they initiate, remain poorly understood. Here, the unusual physiological and computational properties of the ON and OFF smooth monostratified (SM) ganglion cells are explored. Large-scale multi-electrode recordings from 48 macaque retinas revealed that these cells exhibited strikingly irregular receptive field structure composed of spatially segregated hotspots, quite different from the receptive fields of previously described retinal ganglion cell types. The ON and OFF SM cells are paired cell types, but OFF SM cells exhibited stronger hotspot structure than ON cells. Targeted visual stimulation and computational inference demonstrate strong nonlinear subunit properties of each hotspot that contributed to the signaling properties of SM cells. Analysis of shared inputs to neighboring SM cells indicated that each hotspot could not be explained by an individual presynaptic input. Surprisingly, visual stimulation of different hotspots produced subtly different spatiotemporal spike waveforms in the same SM cell, consistent with a dendritic contribution to hotspot structure. These findings point to a previously unreported nonlinear mechanism in the output of the primate retina that contributes to signaling spatial information.


2018 ◽  
Author(s):  
Samuel A. Ocko ◽  
Jack Lindsey ◽  
Surya Ganguli ◽  
Stephane Deny

AbstractOne of the most striking aspects of early visual processing in the retina is the immediate parcellation of visual information into multiple parallel pathways, formed by different retinal ganglion cell types each tiling the entire visual field. Existing theories of efficient coding have been unable to account for the functional advantages of such cell-type diversity in encoding natural scenes. Here we go beyond previous theories to analyze how a simple linear retinal encoding model with different convolutional cell types efficiently encodes naturalistic spatiotemporal movies given a fixed firing rate budget. We find that optimizing the receptive fields and cell densities of two cell types makes them match the properties of the two main cell types in the primate retina, midget and parasol cells, in terms of spatial and temporal sensitivity, cell spacing, and their relative ratio. Moreover, our theory gives a precise account of how the ratio of midget to parasol cells decreases with retinal eccentricity. Also, we train a nonlinear encoding model with a rectifying nonlinearity to efficiently encode naturalistic movies, and again find emergent receptive fields resembling those of midget and parasol cells that are now further subdivided into ON and OFF types. Thus our work provides a theoretical justification, based on the efficient coding of natural movies, for the existence of the four most dominant cell types in the primate retina that together comprise 70% of all ganglion cells.


Sign in / Sign up

Export Citation Format

Share Document