scholarly journals Serotonin Facilitates a Persistent Calcium Current in Motoneurons of Rats With and Without Chronic Spinal Cord Injury

2007 ◽  
Vol 97 (2) ◽  
pp. 1236-1246 ◽  
Author(s):  
X. Li ◽  
K. Murray ◽  
P. J. Harvey ◽  
E. W. Ballou ◽  
D. J. Bennett

In the months after spinal cord transection, motoneurons in the rat spinal cord develop large persistent inward currents (PICs) that are responsible for muscle spasticity. These PICs are mediated by low-threshold TTX-sensitive sodium currents (Na PIC) and L-type calcium currents (Ca PIC). Recently, the Na PIC was shown to become supersensitive to serotonin (5-HT) after chronic injury. In the present paper, a similar change in the sensitivity of the Ca PIC to 5-HT was investigated after injury. The whole sacrocaudal spinal cord from acute spinal rats and spastic chronic spinal rats (S2 level transection 2 mo previously) was studied in vitro. Intracellular recordings were made from motoneurons and slow voltages ramps were applied to measure PICs. TTX was used to block the Na PIC. For motoneurons of chronic spinal rats, a low dose of 5-HT (1 μM) significantly lowered the threshold of the Ca PIC from −56.7 ± 6.0 to −63.1 ± 7.1 mV and increased the amplitude of the Ca PIC from 2.4 ± 1.0 to 3.0 ± 0.73 nA. Higher doses of 5-HT acted similarly. For motoneurons of acute spinal rats, low doses of 5-HT had no significant effects, whereas a high dose (about 30 μM) significantly lowered the threshold of the L-Ca PIC from −58.5 ± 14.8 to −62.5 ± 3.6 mV and increased the amplitude of the Ca PIC from 0.69 ± 1.05 to 1.27 ± 1.1 nA. Thus Ca PICs in motoneurons are about 30-fold supersensitive to 5-HT in chronic spinal rats. The 5-HT–induced facilitation of the Ca PIC was blocked by nimodipine, not by the Ih current blocker Cs+ (3 mM) or the SK current blocker apamin (0.15 μM), and it lasted for hours after the removal of 5-HT from the nCSF, even increasing initially after removing 5-HT. The effects of 5-HT make motoneurons more excitable and ultimately lead to larger, more easily activated plateaus and self-sustained firing. The supersensitivity to 5-HT suggests the small amounts of endogenous 5-HT below the injury in a chronic spinal rat may act on supersensitive receptors to produce large Ca PICs and ultimately enable muscle spasms.

2004 ◽  
Vol 92 (5) ◽  
pp. 2694-2703 ◽  
Author(s):  
Y. Li ◽  
X. Li ◽  
P. J. Harvey ◽  
D. J. Bennett

In the months after spinal cord injury, motoneurons develop large voltage-dependent persistent inward currents (PICs) that cause sustained reflexes and associated muscle spasms. These muscle spasms are triggered by any excitatory postsynaptic potential (EPSP) that is long enough to activate the PICs, which take >100 ms to activate. The PICs are composed of a persistent sodium current (Na PIC) and a persistent calcium current (Ca PIC). Considering that Ca PICs have been shown in other neurons to be inhibited by baclofen, we tested whether part of the antispastic action of baclofen was to reduce the motoneuron PICs as opposed to EPSPs. The whole sacrocaudal spinal cord from acute spinal rats and spastic chronic spinal rats (with sacral spinal transection 2 mo previously) was studied in vitro. Ventral root reflexes were recorded in response to dorsal root stimulation. Intracellular recordings were made from motoneurons, and slow voltage ramps were used to measure PICs. Chronic spinal rats exhibited large monosynaptic and long-lasting polysynaptic ventral root reflexes, and motoneurons had associated large EPSPs and PICs. Baclofen inhibited these reflexes at very low doses with a 50% inhibition (EC50) of the mono- and polysynaptic reflexes at 0.26 ± 0.07and 0.25 ± 0.09 (SD) μM, respectively. Baclofen inhibited the monosynaptic reflex in acute spinal rats at even lower doses (EC50 = 0.18 ± 0.02 μM). In chronic (and acute) spinal rats, all reflexes and EPSPs were eliminated with 1 μM baclofen with little change in motoneuron properties (PICs, input resistance, etc), suggesting that baclofen's antispastic action is presynaptic to the motoneuron. Unexpectedly, in chronic spinal rats higher doses of baclofen (20–30 μM) significantly increased the total motoneuron PIC by 31.6 ± 12.4%. However, the Ca PIC component (measured in TTX to block the Na PIC) was significantly reduced by baclofen. Thus baclofen increased the Na PIC and decreased the Ca PIC with a net increase in total PIC. By contrast, when a PIC was induced by 5-HT (10–30 μM) in motoneurons of acute spinal rats, baclofen (20–30 μM) significantly decreased the PIC by 38.8 ± 25.8%, primarily due to a reduction in the Ca PIC (measured in TTX), which dominated the total PIC in these acute spinal neurons. In summary, baclofen does not exert its antispastic action postsynaptically at clinically achievable doses (<1 μM), and at higher doses (10–30 μM), baclofen unexpectedly increases motoneuron excitability (Na PIC) in chronic spinal rats.


2007 ◽  
Vol 97 (5) ◽  
pp. 3166-3180 ◽  
Author(s):  
Michelle M. Rank ◽  
Xiaole Li ◽  
David J. Bennett ◽  
Monica A. Gorassini

The recovery of persistent inward currents (PICs) and motoneuron excitability after chronic spinal cord transection is mediated, in part, by the development of supersensitivity to residual serotonin (5HT) below the lesion. The purpose of this paper is to investigate if, like 5HT, endogenous sources of norepinephrine (NE) facilitate motoneuron PICs after chronic spinal transection. Cutaneous-evoked reflex responses in tail muscles of awake chronic spinal rats were measured after increasing presynaptic release of NE by administration of amphetamine. An increase in long-lasting reflexes, known to be mediated by the calcium component of the PIC (CaPIC), was observed even at low doses (0.1–0.2 mg/kg) of amphetamine. These findings were repeated in a reduced S2 in vitro preparation, demonstrating that the increased long-lasting reflexes by amphetamine were neural. Under intracellular voltage clamp, amphetamine application led to a large facilitation of the motoneuron CaPIC. This indicates that the increases in long-lasting reflexes induced by amphetamine in the awake animal were, in part, due to actions directly on the motoneuron. Reflex responses in acutely spinal animals were facilitated by amphetamine similar to chronic animals but only at doses that were ten times greater than that required in chronic animals (0.2 mg/kg chronic vs. 2.0 mg/kg acute), pointing to a development of supersensitivity to endogenous NE in chronic animals. In summary, the increases in long-lasting reflexes and associated motoneuron CaPICs by amphetamine are likely due to an increased release of endogenous NE, which motoneurons become supersensitive to in the chronic stages of spinal cord injury.


2001 ◽  
Vol 86 (4) ◽  
pp. 1955-1971 ◽  
Author(s):  
David J. Bennett ◽  
Yunru Li ◽  
Merek Siu

Intracellular recordings were made from sacrocaudal tail motoneurons of acute and chronic spinal rats to examine whether plateau potentials contribute to spasticity associated with chronic injury. The spinal cord was transected at the S2 level, causing, over time, exaggerated long-lasting reflexes (hyperreflexia) associated with a general spasticity syndrome in the tail muscles of chronic spinal rats (1–5 mo postinjury). The whole sacrocaudal spinal cord of chronic or acute spinal rats was removed and maintained in vitro in normal artificial cerebral spinal fluid (ACSF). Hyperreflexia in chronic spinal rats was verified by recording the long-lasting ventral root responses to dorsal root stimulation in vitro. The intrinsic properties of sacrocaudal motoneurons were studied using intracellular injections of slow triangular current ramps or graded current pulses. In chronic spinal rats, the current injection triggered sustained firing and an associated sustained depolarization ( plateau potential; 34/35 cells; mean, 5.5 mV; duration >5 s; normal ACSF). The threshold for plateau initiation was low and usually corresponded to an acceleration in the membrane potential just before recruitment. After recruitment and plateau activation, the firing rate changed linearly with current during the slow ramps [63% of cells had a linear frequency-current ( F-I) relation] despite the presence of the plateau. The persistent inward current ( I PIC) producing the plateau and sustained firing was estimated to be on average 0.8 nA as determined by the reduction in injected current needed to stop the sustained firing [Δ I = −0.8 ± 0.6 (SD) nA], compared with the current needed to start firing ( I = 1.7 ± 1.5 nA; 47% reduction). In motoneurons of acute spinal rats, plateaus were rarely seen (3/22), although they could be made to occur with bath application of serotonin. In motoneurons of chronic spinal rats there were no significant changes in the mean passive input resistance, rheobase or amplitude of the spike afterhyperpolarization (AHP) as compared with acute spinal rats. However, there were significant increases in AHP duration and initial firing rate at recruitment and decreases in minimum firing rate and F-I slope. We suggest that the higher initial firing rate resulted from the plateau activation at recruitment and the lower F-I slope resulted from an increase in active conductance during firing, due to I PIC. Brief dorsal root stimulation also triggered a plateau and sustained discharge (long-lasting reflexes; 2–5 s) in motoneurons of chronic (but not acute) spinal rats. When the plateau was eliminated by a hyperpolarizing current bias, the reflex response was significantly shortened (to 1 s). Thus plateaus contributed substantially to the long-lasting reflexes in vitro and therefore should contribute significantly to the corresponding exaggerated reflexes and spasticity in awake chronic spinal rats.


2006 ◽  
Vol 96 (3) ◽  
pp. 1141-1157 ◽  
Author(s):  
P. J. Harvey ◽  
Y. Li ◽  
X. Li ◽  
D. J. Bennett

Months after sacral spinal transection in rats (chronic spinal rats), motoneurons below the injury exhibit large, low-threshold persistent inward currents (PICs), composed of persistent sodium currents (Na PICs) and persistent calcium currents (Ca PICs). Here, we studied whether motoneurons of normal adult rats also exhibited Na and Ca PICs when the spinal cord was acutely transected at the sacral level (acute spinal rats) and examined the role of the Na PIC in firing behavior. Intracellular recordings were obtained from motoneurons of acute and chronic spinal rats while the whole sacrocaudal spinal cord was maintained in vitro. Compared with chronic spinal rats, motoneurons of acute spinal rats were more difficult to activate because the input resistance was 22% lower and resting membrane potential was hyperpolarized 4.1 mV further below firing threshold (−50.9 ± 6.2 mV). In acute spinal rats, during a slow voltage ramp, a PIC was activated subthreshold to the spike (at −57.2 ± 5.0 mV) and reached a peak current of 1.11 ± 1.21 nA. This PIC was less than one-half the size of that in chronic spinal rats (2.79 ± 0.94 nA) and usually was not large enough to produce bistable behavior (plateau potentials and self-sustained firing not present), unlike in chronic spinal rats. The PIC was composed of two components: a TTX-sensitive Na PIC (0.44 ± 0.36 nA) and a nimodipine-sensitive Ca PIC (0.78 ± 0.82 nA). Both were smaller than in chronic spinal rats (but with similar Na/Ca ratio). The presence of the Na PIC was critical for normal repetitive firing, because no detectable Na PIC was found in the few motoneurons that could not fire repetitively during a slow ramp current injection and motoneurons that had large Na PICs more readily produced repetitive firing and had lower minimum firing rates compared with neurons with small Na PICs. Furthermore, when the Na PIC was selectively blocked with riluzole, steady repetitive firing was eliminated, even though transient firing could be evoked on a rapid current step and the spike itself was unaffected. In summary, only small Ca and Na PICs occur in acute spinal motoneurons, but the Na PIC is essential for steady repetitive firing. We discuss how availability of monoamines may explain the variability in Na PICs and firing in the normal and spinal animals.


2013 ◽  
Vol 109 (6) ◽  
pp. 1473-1484 ◽  
Author(s):  
Jessica M. D'Amico ◽  
Katherine C. Murray ◽  
Yaqing Li ◽  
K. Ming Chan ◽  
Mark G. Finlay ◽  
...  

In animals, the recovery of motoneuron excitability in the months following a complete spinal cord injury is mediated, in part, by increases in constitutive serotonin (5-HT2) and norepinephrine (α1) receptor activity, which facilitates the reactivation of calcium-mediated persistent inward currents (CaPICs) without the ligands serotonin and norepinephrine below the injury. In this study we sought evidence for a similar role of constitutive monoamine receptor activity in the development of spasticity in human spinal cord injury. In chronically injured participants with partially preserved sensory and motor function, the serotonin reuptake inhibitor citalopram facilitated long-lasting reflex responses (spasms) previously shown to be mediated by CaPICs, suggesting that in incomplete spinal cord injury, functional descending sources of monoamines are present to activate monoamine receptors below the lesion. However, in participants with motor or motor/sensory complete injuries, the inverse agonist cyproheptadine, which blocks both ligand and constitutive 5-HT2/α1 receptor activity, decreased long-lasting reflexes, whereas the neutral antagonist chlorpromazine, which only blocks ligand activation of these receptors, had no effect. When tested in noninjured control participants having functional descending sources of monoamines, chlorpromazine was effective in reducing CaPIC-mediated motor unit activity. On the basis of these combined results, it appears that in severe spinal cord injury, facilitation of persistent inward currents and muscle spasms is mainly mediated by the activation of constitutive 5-HT2 and α1 receptor activity. Drugs that more selectively block these constitutively active monoamine receptors may provide better oral control of spasticity, especially in motor complete spinal cord injury where reducing motoneuron excitability is the primary goal.


2008 ◽  
Vol 100 (1) ◽  
pp. 212-223 ◽  
Author(s):  
Kimberly J. Dougherty ◽  
Shawn Hochman

Dysfunction of the spinal GABAergic system has been implicated in pain syndromes following spinal cord injury (SCI). Since lamina I is involved in nociceptive and thermal signaling, we characterized the effects of chronic SCI on the cellular properties of its GABAergic neurons fluorescently identified in spinal slices from GAD67-GFP transgenic mice. Whole cell recordings were obtained from the lumbar cord of 13- to 17-day-old mice, including those having had a thoracic segment (T8-11) removed 6–9 days prior to experiments. Following chronic SCI, the distribution, incidence, and firing classes of GFP+ cells remained similar to controls, and there were minimal changes in membrane properties in cells that responded to current injection with a single spike. In contrast, cells displaying tonic/initial burst firing had more depolarized membrane potentials, increased steady-state outward currents, and increased spike heights. Moreover, higher firing frequencies and spontaneous plateau potentials were much more prevalent after chronic SCI, and these changes occurred predominantly in cells displaying a tonic firing pattern. Persistent inward currents (PICs) were observed in a similar fraction of cells from spinal transects and may have contributed to these plateaus. Persistent Na+ and L-type Ca2+ channels likely contributed to the currents as both were identified pharmacologically. In conclusion, chronic SCI induces a plastic response in a subpopulation of lamina I GABAergic interneurons. Alterations are directed toward amplifying neuronal responsiveness. How these changes alter spinal sensory integration and whether they contribute to sensory dysfunction remains to be elucidated.


Author(s):  
CS Ahuja ◽  
M Khazaei ◽  
P Chan ◽  
J Bhavsar ◽  
Y Yao ◽  
...  

Background: Human induced pluripotent stem cell-derived neural stem cells (hiPS-NSCs) represent an exciting therapeutic approach for traumatically spinal cord injury (SCI). Unfortunately, most patients are the in chronic injury phase where a dense perilesional chondroitin sulfate proteoglycan (CSPG) scar significantly hinders regeneration. CSPG-degrading enzymes can enhance NSC-mediated recovery, however, nonspecific intrathecal administration causes off-target effects. We aimed to genetically engineer hiPS-NSCs to express a scar-degrading ENZYME into their local environment to enhance functional recovery. Methods: A bicistronic scar-degrading ENZYME and RFP reporter vector was non-virally integrated into hiPS-NSCs and monoclonalized. ENZYME activity was assessed by WST-1 and DMMB biochemical assays and an in vitro CSPG spot assay with hiPS-NSC-derived neurons. To assess in vivo efficacy, T-cell deficient rats (N=60) with chronic (8wk) C6-7 SCIs were randomized to receive (1)SMaRT cells, (2)hiPS-NSCs, (3)vehicle, or (4)sham surgery. Results: SMaRT cells retained key hiPS-NSC characteristics while stably expressing ENZYME. The expressed ENZYME could appropriately degrade in vitro and ex vivo CSPGs. While blinded neurobehavioural and immunohistochemical assessments are ongoing at 40wks post-injury, an interim analysis demonstrated human cells extending remarkably long (≥20,000µm) axons along host white matter tracts. Conclusions: This work provides exciting proof-of-concept data that genetically-engineered SMaRT cells can degrade CSPGs and human NSCs can extend long-distance processes in chronic SCI.


2011 ◽  
Vol 105 (2) ◽  
pp. 731-748 ◽  
Author(s):  
Katherine C. Murray ◽  
Marilee J. Stephens ◽  
Edmund W. Ballou ◽  
Charles J. Heckman ◽  
David J. Bennett

Immediately after spinal cord injury (SCI), a devastating paralysis results from the loss of brain stem and cortical innervation of spinal neurons that control movement, including a loss of serotonergic (5-HT) innervation of motoneurons. Over time, motoneurons recover from denervation and function autonomously, exhibiting large persistent calcium currents (Ca PICs) that both help with functional recovery and contribute to uncontrolled muscle spasms. Here we systematically evaluated which 5-HT receptor subtypes influence PICs and spasms after injury. Spasms were quantified by recording the long-lasting reflexes (LLRs) on ventral roots in response to dorsal root stimulation, in the chronic spinal rat, in vitro. Ca PICs were quantified by intracellular recording in synaptically isolated motoneurons. Application of agonists selective to 5-HT2B and 5-HT2C receptors (including BW723C86) significantly increased the LLRs and associated Ca PICs, whereas application of agonists to 5-HT1, 5-HT2A, 5-HT3, or 5-HT4/5/6/7 receptors (e.g., 8-OH-DPAT) did not. The 5-HT2 receptor agonist–induced increases in LLRs were dose dependent, with doses for 50% effects (EC50) highly correlated with published doses for agonist receptor binding ( Ki) at 5-HT2B and 5-HT2C receptors. Application of selective antagonists to 5-HT2B (e.g., RS127445) and 5-HT2C (SB242084) receptors inhibited the agonist-induced increase in LLR. However, antagonists that are known to specifically be neutral antagonists at 5-HT2B/C receptors (e.g., RS127445) had no effect when given by themselves, indicating that these receptors were not activated by residual 5-HT in the spinal cord. In contrast, inverse agonists (such as SB206553) that block constitutive activity at 5-HT2B or 5-HT2C receptors markedly reduced the LLRs, indicating the presence of constitutive activity in these receptors. 5-HT2B or 5-HT2C receptors were confirmed to be on motoneurons by immunolabeling. In summary, 5-HT2B and 5-HT2C receptors on motoneurons become constitutively active after injury and ultimately contribute to recovery of motoneuron function and emergence of spasms.


2013 ◽  
Vol 109 (6) ◽  
pp. 1485-1493 ◽  
Author(s):  
Jessica M. D'Amico ◽  
Yaqing Li ◽  
David J. Bennett ◽  
Monica A. Gorassini

Activation of receptors by serotonin (5-HT1) and norepinephrine (α2) on primary afferent terminals and excitatory interneurons reduces transmission in spinal sensory pathways. Loss or reduction of descending sources of serotonin and norepinephrine after spinal cord injury (SCI) and the subsequent reduction of 5-HT1/α2 receptor activity contributes, in part, to the emergence of excessive motoneuron activation from sensory afferent pathways and the uncontrolled triggering of persistent inward currents that depolarize motoneurons during muscle spasms. We tested in a double-blind, placebo-controlled study whether facilitating 5-HT1B/D receptors with the agonist zolmitriptan reduces the sensory activation of motoneurons during an H-reflex in both noninjured control and spinal cord-injured participants. In both groups zolmitriptan, but not placebo, reduced the size of the maximum soleus H-reflex with a peak decrease to 59% (noninjured) and 62% (SCI) of predrug values. In SCI participants we also examined the effects of zolmitriptan on the cutaneomuscular reflex evoked in tibialis anterior from stimulation to the medial arch of the foot. Zolmitriptan, but not placebo, reduced the long-latency, polysynaptic component of the cutaneomuscular reflex (first 200 ms of reflex) by ∼50%. This ultimately reduced the triggering of the long-lasting component of the reflex (500 ms poststimulation to end of reflex) known to be mediated by persistent inward currents in the motoneuron. These results demonstrate that facilitation of 5-HT1B/D receptors reduces sensory transmission in both monosynaptic and polysynaptic reflex pathways to ultimately reduce long-lasting reflexes (spasms) after SCI.


2004 ◽  
Vol 91 (5) ◽  
pp. 2236-2246 ◽  
Author(s):  
Y. Li ◽  
P. J. Harvey ◽  
X. Li ◽  
D. J. Bennett

Over the months following sacral spinal cord transection in adult rats, a pronounced spasticity syndrome emerges in the affected tail musculature, where long-lasting muscle spasms can be evoked by low-threshold afferent stimulation (termed long-lasting reflex). To develop an in vitro preparation to examine the neuronal mechanisms underlying spasticity, we removed the whole sacrocaudal spinal cord of these spastic chronic spinal rats (>1 mo after S2 sacral spinal transection) and maintained it in artificial cerebral spinal fluid in a recording chamber. The ventral roots were mounted on monopolar recording electrodes in grease, and the reflex responses to dorsal root stimulation were recorded and compared with the reflexes seen in the awake chronic spinal rat. When the dorsal roots were stimulated with a single pulse, a long-lasting reflex occurred in the ventral roots, with identical characteristics to the long-lasting reflex in the awake spastic rat tail. The reflex response was low threshold ( T), short latency, long duration (∼2 s), and enhanced by repeated stimulation. Brief high-frequency stimulation trains (0.5 s, 100 Hz, 1.5 × T) evoked even longer duration responses (5–10 s), with repeated bursts of activity that were similar to the repeated muscle spasms evoked in awake rats with stimulation trains or manual skin stimulation. Stimulation of a given dorsal root evoked long-lasting reflexes in both the ipsilateral and contralateral ventral roots. Long-lasting reflexes did not occur in the sacrocaudal spinal cord of acute spinal rats (S2 transection), which is similar to the areflexia seen in awake acute spinal rats. However, long-lasting reflexes could be made to occur in the acute spinal rat by altering K+ (7 mM) or Mg2+ (0 mM) concentrations, or by application of high doses of the neuromodulators norepinephrine (NE, >20 μM) or serotonin (5-HT, >20 μM). In chronic spinal rats, much lower doses of these neuromodulators (0.1 μM) enhanced the long-lasting reflexes, suggesting a denervation supersensitivity to 5-HT and NE following injury. Higher doses of NE or 5-HT produced a paradoxical inhibition of the long-lasting reflexes. The high dose inhibition by NE was mimicked by the α2-adrenergic receptor agonist clonidine but not the α1-adrenergic receptor agonist methoxamine. In summary, the sacral spinal in vitro preparation offers a new approach to the study of spinal cord injury and analysis of antispastic drugs.


Sign in / Sign up

Export Citation Format

Share Document