adrenergic receptor agonist
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 63)

H-INDEX

32
(FIVE YEARS 4)

Obesity ◽  
2021 ◽  
Author(s):  
Zahraa Abdul Sater ◽  
Cheryl Cero ◽  
Anne E. Pierce ◽  
Hannah J. Lea ◽  
Houssein Abdul Sater ◽  
...  

2021 ◽  
Vol 233 (5) ◽  
pp. S197-S198
Author(s):  
Evan J. Fahy ◽  
Michelle Griffin ◽  
Darren Abbas ◽  
Christopher V. Lavin ◽  
Megan E. King ◽  
...  

2021 ◽  
Vol 25 ◽  
pp. e30
Author(s):  
Chia-chi Liu ◽  
YunJia Zhang ◽  
Angela Makris ◽  
Helge H. Rasmussen ◽  
Annemarie Hennessy

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256768
Author(s):  
Patrick Munro ◽  
Samah Rekima ◽  
Agnès Loubat ◽  
Christophe Duranton ◽  
Didier F. Pisani ◽  
...  

White adipocytes store energy differently than brown and brite adipocytes which dissipate energy under the form of heat. Studies have shown that adipocytes are able to respond to bacteria thanks to the presence of Toll-like receptors at their surface. Despite this, little is known about the involvement of each class of adipocytes in the infectious response. We treated mice for one week with a β3-adrenergic receptor agonist to induce activation of brown adipose tissue and brite adipocytes within white adipose tissue. Mice were then injected intraperitoneally with E. coli to generate acute infection. The metabolic, infectious and inflammatory parameters of the mice were analysed during 48 hours after infection. Our results shown that in response to bacteria, thermogenic activity promoted a discrete and local anti-inflammatory environment in white adipose tissue characterized by the increase of the IL-1RA secretion. More generally, activation of brown and brite adipocytes did not modify the host response to infection including no additive effect with fever and an equivalent bacteria clearance and inflammatory response. In conclusion, these results suggest an IL-1RA-mediated immunomodulatory activity of thermogenic adipocytes in response to acute bacterial infection and open a way to characterize their effect along more chronic infection as septicaemia.


2021 ◽  
Vol 14 (8) ◽  
pp. 825
Author(s):  
Chen-Fang Lee ◽  
Chih-Hsien Cheng ◽  
Hao-Chien Hung ◽  
Jin-Chiao Lee ◽  
Yu-Chiao Wang ◽  
...  

Dexmedetomidine, an α2-adrenergic receptor agonist, is used as an anti-anxiety medication. It exerts a cholinergic effect, thereby reducing the release of tumor necrosis factor alpha (TNF-α). We hypothesized that the use of dexmedetomidine as a sedative agent in transplantation would also protect allografts. We examined our patients who underwent living donor liver transplantation. Subsequently, we generated a series of mouse models to investigate the effect of dexmedetomidine on sedation-based tolerance post transplantation. A total of 49 liver recipients were enrolled in this study, of which 23 (47%) were administered dexmedetomidine through 24 h infusion on postoperative day 1. A trend toward the improvement of hepatocyte injury along with better liver function was observed in the dexmedetomidine-treated group during the first postoperative week. In animal models, dexmedetomidine inhibited the proliferation of CD4+ and CD8+ T cells and TNF-α production in a dose-dependent manner. We used dexmedetomidine to treat skin-transplanted mice and observed a significantly prolonged graft survival in mice that were administered a higher dose of dexmedetomidine. Our results revealed that dexmedetomidine exerts a dual effect of sedation and immunosuppression. This light-sedation approach will not only make patients calmer in the intensive care unit but also protect allografts from injury.


2021 ◽  
Vol 8 ◽  
Author(s):  
Simone Pickel ◽  
Yiliam Cruz-Garcia ◽  
Sandra Bandleon ◽  
Katalin Barkovits ◽  
Cornelia Heindl ◽  
...  

L-type voltage-gated calcium channels (LTCCs) regulate crucial physiological processes in the heart. They are composed of the Cavα1 pore-forming subunit and the accessory subunits Cavβ, Cavα2δ, and Cavγ. Cavβ is a cytosolic protein that regulates channel trafficking and activity, but it also exerts other LTCC-independent functions. Cardiac hypertrophy, a relevant risk factor for the development of congestive heart failure, depends on the activation of calcium-dependent pro-hypertrophic signaling cascades. Here, by using shRNA-mediated Cavβ silencing, we demonstrate that Cavβ2 downregulation enhances α1-adrenergic receptor agonist-induced cardiomyocyte hypertrophy. We report that a pool of Cavβ2 is targeted to the nucleus in cardiomyocytes and that the expression of this nuclear fraction decreases during in vitro and in vivo induction of cardiac hypertrophy. Moreover, the overexpression of nucleus-targeted Cavβ2 in cardiomyocytes inhibits in vitro-induced hypertrophy. Quantitative proteomic analyses showed that Cavβ2 knockdown leads to changes in the expression of diverse myocyte proteins, including reduction of calpastatin, an endogenous inhibitor of the calcium-dependent protease calpain. Accordingly, Cavβ2-downregulated cardiomyocytes had a 2-fold increase in calpain activity as compared to control cells. Furthermore, inhibition of calpain activity in Cavβ2-downregulated cells abolished the enhanced α1-adrenergic receptor agonist-induced hypertrophy observed in these cells. Our findings indicate that in cardiomyocytes, a nuclear pool of Cavβ2 participates in cellular functions that are independent of LTCC activity. They also indicate that a downregulation of nuclear Cavβ2 during cardiomyocyte hypertrophy promotes the activation of calpain-dependent hypertrophic pathways.


Sign in / Sign up

Export Citation Format

Share Document