scholarly journals Neurons with inverted tuning during the delay periods of working memory tasks in the dorsal prefrontal and posterior parietal cortex

2012 ◽  
Vol 108 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Xin Zhou ◽  
Fumi Katsuki ◽  
Xue-Lian Qi ◽  
Christos Constantinidis

The dorsolateral prefrontal and posterior parietal cortices are two interconnected brain areas that are coactivated in tasks involving functions such as spatial attention and working memory. The response properties of neurons in the two areas are in many respects indistinguishable, yet only prefrontal neurons are able to resist interference by distracting stimuli when subjects are required to remember an initial stimulus. Several mechanisms have been proposed that could account for this functional difference, including the existence of specialized interneuron types, specific to the prefrontal cortex. Although such neurons with inverted tuning during the delay period of a working memory task have been described in the prefrontal cortex, no comparative data exist from other cortical areas that would establish a unique prefrontal role. To test this hypothesis, we analyzed a large database of recordings obtained in the dorsolateral prefrontal and posterior parietal cortex of the same monkeys as they performed working memory tasks. We found that in the prefrontal cortex, neurons with inverted tuning were more numerous and manifested unique properties. Our results give credence to the idea that a division of labor exists between separate neuron types in the prefrontal cortex and that this represents a functional specialization that is not present in its cortical afferents.

Author(s):  
I.S. Bakulin ◽  
A.H. Zabirova ◽  
P.N. Kopnin ◽  
D.O. Sinitsyn ◽  
A.G. Poydasheva ◽  
...  

Despite intensive study, the data regarding functional role of specific brain regions in the working memory processes still remain controversial. The study was aimed to determine the activation of cerebral cortex regions at different stages of the working memory task (information encoding, maintenance and retrieval). Functional magnetic resonance imaging (fMRI) with the modified Sternberg task was applied to 19 healthy volunteers. The objective of the task was to memorize and retain in memory the sequence of 7 letters with the subsequent comparison of one letter with the sequence. Activation was analyzed during three periods of the task compared to the rest period, as well as temporal dynamics of changes in BOLD signal intensity in three regions: left dorsolateral prefrontal, left posterior parietal and left occipital cortex. According to the results, significant activation of the regions in prefrontal and posterior parietal cortex was observed during all periods of the task (p < 0.05), but there were changes in its localization and lateralization. The activation pattern during the maintenance period corresponded to the fronto-parietal control network components. According to the analysis of temporal dynamics of changes in BOLD signal intensity, the most prominent activation of the dorsolateral prefrontal cortex and parietal cortex was observed in the end of the encoding period, during the maintenance period and in the beginning of the retrieval period, which confirmed the role of those areas in the working memory processes. The maximum of occipital cortex activation was observed during encoding period. The study confirmed the functional role of the dorsolateral prefrontal cortex and posterior parietal cortex in the working memory mechanisms during all stages of the Sternberg task.


2015 ◽  
Vol 114 (4) ◽  
pp. 2194-2203 ◽  
Author(s):  
Xue-Lian Qi ◽  
Christos Constantinidis

The dorsolateral prefrontal and posterior parietal cortex are two brain areas involved in cognitive functions such as spatial attention and working memory. When tested with identical tasks, only subtle differences in firing rate are present between neurons recorded in the two areas. In this article we report that major differences in neuronal variability characterize the two areas during working memory. The Fano factors of spike counts in dorsolateral prefrontal neurons were consistently lower than those of the posterior parietal cortex across a range of tasks, epochs, and conditions in the same monkeys. Variability differences were observed despite minor differences in firing rates between the two areas in the tasks tested and higher overall firing rate in the prefrontal than in the posterior parietal sample. Other measures of neuronal discharge variability, such as the coefficient of variation of the interspike interval, displayed the same pattern of lower prefrontal variability. Fano factor values were negatively correlated with performance in the working memory task, suggesting that higher neuronal variability was associated with diminished task performance. The results indicate that information involving remembered stimuli is more reliably represented in the prefrontal than the posterior parietal cortex based on the variability of neuronal responses, and suggest functional differentiation between the two areas beyond differences in firing rate.


2015 ◽  
Vol 113 (1) ◽  
pp. 44-57 ◽  
Author(s):  
Xue-Lian Qi ◽  
Anthony C. Elworthy ◽  
Bryce C. Lambert ◽  
Christos Constantinidis

Both dorsolateral prefrontal and posterior parietal cortex have been implicated in spatial working memory and representation of task information. Prior experiments training animals to recall the first of a sequence of stimuli and examining the effect of subsequent distractors have identified increased ability of the prefrontal cortex to represent remembered stimuli and filter distractors. It is unclear, however, if this prefrontal functional specialization extends to stimuli appearing earlier in a sequence, when subjects are cued to remember subsequent ones. It is also not known how task information interacts with persistent activity representing remembered stimuli and distractors in the two areas. To address these questions, we trained monkeys to remember either the first or second of two stimuli presented in sequence and recorded neuronal activity from the posterior parietal and dorsolateral prefrontal cortex. The prefrontal cortex was better able to represent the actively remembered stimulus, whereas the posterior parietal cortex was more modulated by distractors; however, task effects interfered with this representation. As a result, large proportions of neurons with persistent activity and task effects exhibited a preference for a stimulus when it appeared as a distractor in both areas. Additionally, prefrontal neurons were modulated to a greater extent by task factors during the delay period of the task. The results indicate that the prefrontal cortex is better able than the posterior parietal cortex to differentiate between distractors and actively remembered stimuli and is more modulated by the task; however, this relative preference is highly context dependent and depends on the specific requirements of the task.


2019 ◽  
Author(s):  
Guillermo Gonzalez-Burgos ◽  
Takeaki Miyamae ◽  
Yosef Krimer ◽  
Yelena Gulchina ◽  
Diego Pafundo ◽  
...  

AbstractIn primates, working memory function depends on activity in a distributed network of cortical areas that display different patterns of delay task-related activity. These differences are correlated with, and might depend on, distinctive properties of the neurons located in each area. For example, layer 3 pyramidal neurons (L3PNs) differ significantly between primary visual and dorsolateral prefrontal (DLPFC) cortices. However, to what extent L3PNs differ between DLPFC and other association cortical areas is less clear. Hence, we compared the properties of L3PNs in monkey DLPFC versus posterior parietal cortex (PPC), a key node in the cortical working memory network. Using patch clamp recordings and biocytin cell filling in acute brain slices, we assessed the physiology and morphology of L3PNs from monkey DLPFC and PPC. The L3PN transcriptome was studied using laser microdissection combined with DNA microarray or quantitative PCR. We found that in both DLPFC and PPC, L3PNs were divided into regular spiking (RS-L3PNs) and bursting (B-L3PNs) physiological subtypes. Whereas regional differences in single-cell excitability were modest, B-L3PNs were rare in PPC (RS-L3PN:B-L3PN, 94:6), but were abundant in DLPFC (50:50), showing greater physiological diversity. Moreover, DLPFC L3PNs display larger and more complex basal dendrites with higher dendritic spine density. Additionally, we found differential expression of hundreds of genes, suggesting a transcriptional basis for the differences in L3PN phenotype between DLPFC and PPC. These data show that the previously observed differences between DLPFC and PPC neuron activity during working memory tasks are associated with diversity in the cellular/molecular properties of L3PNs.Significance statementIn the human and non-human primate neocortex, layer 3 pyramidal neurons (L3PNs) differ significantly between dorsolateral prefrontal (DLPFC) and sensory areas. Hence, L3PN properties reflect, and may contribute to, a greater complexity of computations performed in DLPFC. However, across association cortical areas, L3PN properties are largely unexplored. We studied the physiology, dendrite morphology and transcriptome of L3PNs from macaque monkey DLPFC and posterior parietal cortex (PPC), two key nodes in the cortical working memory network. L3PNs from DLPFC had greater diversity of physiological properties and larger basal dendrites with higher spine density. Moreover, transcriptome analysis suggested a molecular basis for the differences in the physiological and morphological phenotypes of L3PNs from DLPFC and PPC.


2017 ◽  
Author(s):  
Athena Akrami ◽  
Charles D. Kopec ◽  
Mathew E. Diamond ◽  
Carlos Brody

Many models of cognition and of neural computations posit the use and estimation of prior stimulus statistics1–4: it has long been known that working memory and perception are strongly impacted by previous sensory experience, even when that sensory history is irrelevant for the current task at hand. Nevertheless, the neural mechanisms and brain regions necessary for computing and using such priors are unknown. Here we report that the posterior parietal cortex (PPC) is a critical locus for the representation and use of prior stimulus information. We trained rats in an auditory Parametric Working Memory (PWM) task, and found that rats displayed substantial and readily quantifiable behavioral effects of sensory stimulus history, similar to those observed in humans5,6 and monkeys7. Earlier proposals that PPC supports working memory8,9 predict that optogenetic silencing of this region would impair behavior in our working memory task. Contrary to this prediction, silencing PPC significantly improved performance. Quantitative analyses of behavior revealed that this improvement was due to the selective reduction of the effects of prior sensory stimuli. Electrophysiological recordings showed that PPC neurons carried far more information about sensory stimuli of previous trials than about stimuli of the current trial. Furthermore, the more information about previous trial sensory history in the neural firing rates of a given rat’s PPC, the greater the behavioral effect of sensory history in that rat, suggesting a tight link between behavior and PPC representations of stimulus history. Our results indicate that the PPC is a central component in the processing of sensory stimulus history, and open a window for neurobiological investigation of long-standing questions regarding how perception and working memory are affected by prior sensory information.


Sign in / Sign up

Export Citation Format

Share Document