Rate Coding Is Compressed But Variability Is Unaltered for Motor Units in a Hand Muscle of Old Adults

2007 ◽  
Vol 97 (5) ◽  
pp. 3206-3218 ◽  
Author(s):  
Benjamin K. Barry ◽  
Michael A. Pascoe ◽  
Mark Jesunathadas ◽  
Roger M. Enoka

The discharge of single motor units ( n = 34) in the first dorsal interosseus muscle and the fluctuations in force during steady contractions were measured across a range of index finger abduction forces in old adults (77.1 ± 6.9 yr, n = 20). These results were compared with previously reported data on 38 motor units from young adults (25.7 ± 5.7 yr). Both minimal and peak discharge rates increased with recruitment threshold, but the strength of these relations was notably weaker for the old adults. Minimal discharge rates were similar for young and old adults ( P = 0.77), whereas peak discharge rates were lower for old adults ( P < 0.01). Consequently, the range of rate coding for each motor unit was substantially less for the old adults (7.1 pps) compared with the young adults (12.1 pps, P < 0.01). However, the variability in motor-unit discharge was similar for young and old adults; the coefficient of variation of the interspike intervals was similar at recruitment (old: 25.4%, young: 27.1%, P = 0.39) and declined with an increase in discharge rate (old: 13.2%, young: 14.2%, P = 0.21). Furthermore, the fluctuations in force during steady isometric contractions (2–95% of maximal force) were similar for young and old adults, except that the relative variability at the lowest force was greater for the old adults. A computational model of motor-unit recruitment and rate coding incorporated the experimental observations and was able to match the measured and simulated values for force steadiness across the operating range of the muscle.

1994 ◽  
Vol 76 (6) ◽  
pp. 2411-2419 ◽  
Author(s):  
S. J. Garland ◽  
R. M. Enoka ◽  
L. P. Serrano ◽  
G. A. Robinson

The activity of 50 single motor units was recorded in the biceps brachii muscle of human subjects while they performed submaximal isometric elbow flexion contractions that were sustained to induce fatigue. The purposes of this study were to examine the influence of fatigue on motor unit threshold force and to determine the relationship between the threshold force of recruitment and the initial interimpulse interval on the discharge rates of single motor units during a fatiguing contraction. The discharge rate of most motor units that were active from the beginning of the contraction declined during the fatiguing contraction, whereas the discharge rates of most newly recruited units were either constant or increased slightly. The absolute threshold forces of recruitment and derecruitment decreased, and the variability of interimpulse intervals increased after the fatigue task. The change in motor unit discharge rate during the fatigue task was related to the initial rate, but the direction of the change in discharge rate could not be predicted from the threshold force of recruitment or the variability in the interimpulse intervals. The discharge rate of most motor units declined despite an increase in the excitatory drive to the motoneuron pool during the fatigue task.


2013 ◽  
Vol 109 (4) ◽  
pp. 1055-1064 ◽  
Author(s):  
Michael A. Pascoe ◽  
Jeffrey R. Gould ◽  
Roger M. Enoka

The purpose of the study was to compare the discharge characteristics of biceps brachii motor units of young and old adults when they performed steady, submaximal contractions while the arm supported different inertial loads. Young (28 ± 4 yr; n = 16) and old (75 ± 4 yr; n = 14) adults performed steady contractions with the elbow flexors at target forces set at either small (11.7 ± 4.4% maximum) or large (17.8 ± 6.5% maximum) differences below the recruitment threshold force of the motor unit ( n = 40). The task was to maintain an elbow angle at 1.57 rad until the motor unit was recruited and discharged action potentials for ∼120 s. Time to recruitment was longer for the larger target force difference (187 ± 227 s vs. 23 ± 46 s, P < 0.001). Once recruited, motor units discharged action potentials either repetitively or intermittently, with a greater proportion of motor units exhibiting the repetitive pattern for old adults. Discharge rate at recruitment and during the steady contraction was similar for the two target force differences for old adults but was greater for the small target force difference for young adults. Discharge variability was similar at recruitment for the two age groups but less for the old adults during the steady contraction. The greatest difference between the present results and those reported previously when the arm pulled against a rigid restraint was that old adults modulated discharge rate less than young adults across the two contraction intensities for both load types.


2009 ◽  
Vol 102 (3) ◽  
pp. 1890-1901 ◽  
Author(s):  
Marco A. Minetto ◽  
Aleš Holobar ◽  
Alberto Botter ◽  
Dario Farina

We analyzed individual motor units during electrically elicited cramp contractions with the aim of characterizing the variability and degree of common oscillations in their discharges. Intramuscular and surface electromyographic (EMG) signals were detected from the abductor hallucis muscle of 11 healthy subjects (age 27.0 ± 3.7 yr) during electrically elicited cramps. In all, 48 motor units were identified from the intramuscular EMG. These motor units were active for 23.6 ± 16.2 s, during which their average discharge rate was 14.5 ± 5.1 pulses/s (pps) and their minimum and maximum rates were, respectively, 6.0 ± 0.8 and 25.0 ± 8.0 pps ( P < 0.001). The coefficient of variation for the interspike interval (ISI) was 44.6 ± 9.7% and doublet discharges constituted 4.1 ± 4.7% of the total number of discharges. In 38 motor units, the SD of the ISI was positively correlated to the mean ISI ( R2 = 0.37, P < 0.05). The coherence spectrum between smoothed discharge rates of pairs of motor units showed one significant peak at 1.4 ± 0.4 Hz for 29 of the 96 motor unit pairs and two significant peaks at 1.3 ± 0.5 and 1.5 ± 0.5 Hz for 8 motor unit pairs. The cross-correlation function between pairs of discharge rates showed a significant peak (0.52 ± 0.11) in 26 motor unit pairs. In conclusion, motor units active during cramps showed a range of discharge rates similar to that observed during voluntary contractions but larger ISI variability, probably due to large synaptic noise. Moreover, the discharge rates of the active motor units showed common oscillations.


2010 ◽  
Vol 108 (6) ◽  
pp. 1550-1562 ◽  
Author(s):  
Jakob L. Dideriksen ◽  
Dario Farina ◽  
Martin Baekgaard ◽  
Roger M. Enoka

The purpose of the study was to expand a model of motor unit recruitment and rate coding ( 30 ) to simulate the adjustments that occur during a fatiguing contraction. The major new components of the model were the introduction of time-varying parameters for motor unit twitch force, recruitment, discharge rate, and discharge variability, and a control algorithm that estimates the net excitation needed by the motoneuron pool to maintain a prescribed target force. The fatigue-induced changes in motor unit activity in the expanded model are a function of changes in the metabolite concentrations that were computed with a compartment model of the intra- and extracellular spaces. The model was validated by comparing the simulation results with data available from the literature and experimentally recorded in the present study during isometric contractions of the first dorsal interosseus muscle. The output of the model was able to replicate a number of experimental findings, including the time to task failure for a range of target forces, the changes in motor unit discharge rates, the skewness and kurtosis of the interspike interval distributions, discharge variability, and the discharge characteristics of newly recruited motor units. The model output provides an integrative perspective of the adjustments during fatiguing contractions that are difficult to measure experimentally.


2008 ◽  
Vol 33 (6) ◽  
pp. 1086-1095 ◽  
Author(s):  
Teatske M. Altenburg ◽  
Cornelis J. de Ruiter ◽  
Peter W.L. Verdijk ◽  
Willem van Mechelen ◽  
Arnold de Haan

A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20° at 10°/s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%–47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 ± 0.19) and discharge rate (1.11 ± 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 ± 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 ± 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.


2005 ◽  
Vol 30 (3) ◽  
pp. 341-351 ◽  
Author(s):  
Gary Kamen

Researchers have alluded to the existence of "neural factors" in the expression and development of muscular strength. Candidate neural factors including motor unit recruitment, rate coding, doublet firing, and motor unit synchronization are discussed in this review. Aging is generally accompanied by lower motor unit discharge rates. However, both young and older adults exhibit rapid changes in muscular strength with repeated strength testing. These strength changes occur with concomitant albeit transient increases in motor unit discharge rate. These and other neural factors may contribute to the initial increases in muscular strength observed during the early phases of resistance exercise training. Key words: firing rate, muscle, exercise


2013 ◽  
Vol 109 (12) ◽  
pp. 2947-2954 ◽  
Author(s):  
Li-Wei Chou ◽  
Jacqueline A. Palmer ◽  
Stuart Binder-Macleod ◽  
Christopher A. Knight

Information regarding how motor units are controlled to produce forces in individuals with stroke and the mechanisms behind muscle weakness and movement slowness can potentially inform rehabilitation strategies. The purpose of this study was to describe the rate coding mechanism in individuals poststroke during both constant ( n = 8) and rapid ( n = 4) force production tasks. Isometric ankle dorsiflexion force, motor unit action potentials, and surface electromyography were recorded from the paretic and nonparetic tibialis anterior. In the paretic limb, strength was 38% less and the rate of force development was 63% slower. Linear regression was used to describe and compare the relationships between motor unit and electromyogram (EMG) measures and force. During constant force contractions up to 80% maximal voluntary contraction (MVC), rate coding was compressed and discharge rates were lower in the paretic limb. During rapid muscle contractions up to 90% MVC, the first interspike interval was prolonged and the rate of EMG rise was less in the paretic limb. Future rehabilitation strategies for individuals with stroke could focus on regaining these specific aspects of motor unit rate coding and neuromuscular activation.


2009 ◽  
Vol 101 (2) ◽  
pp. 624-632 ◽  
Author(s):  
Dario Farina ◽  
Deborah Falla

We analyzed individual motor units of the sternohyoid muscle with the aim of characterizing their minimum and maximum discharge rates and their variability in discharge during voluntary contractions. Surface EMG signals were recorded with an array of eight electrodes from the sternohyoid muscle of seven healthy men (age: 30.2 ± 3.5 yr). The multichannel surface EMG signals were displayed as feedback for the subjects who identified and modulated the activity of one target motor unit in 30-s contractions during which the discharge rate was increased from minimum to maximum (ramp contraction), sustained at maximum level (sustained), or increased in brief bursts (burst). During the ramp contractions, the minimum average discharge rate over epochs of 1 s was 11.6 ± 1.5 pulses per second (pps) and the maximum 57.0 ± 5.7 pps ( P < 0.001). During the sustained contractions, the motor unit discharge rate decreased from 65.5 ± 8.4 pps at the beginning to 52.9 ± 7.6 pps at the end of the contraction ( P < 0.05). The coefficient of variation for the interspike interval during the sustained contractions was 40.2 ± 9.8% and a large percentage of discharges had instantaneous rates >50 pps (52.2 ± 12.5%) and >100 pps (8.0 ± 1.2%), with peak values >150 pps. During the burst contractions, the instantaneous discharge rate reached average maximum values of 97.6 ± 36.8 pps. The observed discharge rates and their variability are higher than those reported for limb muscles, which may be due to large synaptic input and noise received by these motor neurons.


2012 ◽  
Vol 107 (2) ◽  
pp. 666-676 ◽  
Author(s):  
Taian M. M. Vieira ◽  
Ian D. Loram ◽  
Silvia Muceli ◽  
Roberto Merletti ◽  
Dario Farina

The recruitment and the rate of discharge of motor units are determinants of muscle force. Within a motoneuron pool, recruitment and rate coding of individual motor units might be controlled independently, depending on the circumstances. In this study, we tested whether, during human quiet standing, the force of the medial gastrocnemius (MG) muscle is predominantly controlled by recruitment or rate coding. If MG control during standing was mainly due to recruitment, then we further asked what the trigger mechanism is. Is it determined internally, or is it related to body kinematics? While seven healthy subjects stood quietly, intramuscular electromyograms were recorded from the MG muscle with three pairs of wire electrodes. The number of active motor units and their mean discharge rate were compared for different sway velocities and positions. Motor unit discharges occurred more frequently when the body swayed faster and forward (Pearson R = 0.63; P < 0.0001). This higher likelihood of observing motor unit potentials was explained chiefly by the recruitment of additional units. During forward body shifts, the median number of units detected increased from 3 to 11 ( P < 0.0001), whereas the discharge rate changed from 8 ± 1.1 (mean ± SD) to 10 ± 0.9 pulses/s ( P = 0.001). Strikingly, motor units did not discharge continuously throughout standing. They were recruited within individual, forward sways and intermittently, with a modal rate of two recruitments per second. This modal rate is consistent with previous circumstantial evidence relating the control of standing to an intrinsic, higher level planning process.


1985 ◽  
Vol 53 (1) ◽  
pp. 32-42 ◽  
Author(s):  
L. Jami ◽  
J. Petit ◽  
U. Proske ◽  
D. Zytnicki

The discharges of individual tendon organs of peroneus longus and tertius muscles were examined in anesthetized cats during stimulation of single motor units at frequencies that elicit unfused contraction (5-50/s). At these frequencies nearly all the fast-contracting motor units activating a tendon organ elicited responses whose discharge rates reproduced the stimulation frequency ("1:1 driving"), whereas slow-contracting motor units elicited responses in which the discharge rate was higher than the stimulation frequency. When a motor unit stimulated at 40/s developed a gradually potentiating tension, the tendon organ discharge could remain locked on stimulation frequency over an appreciable range of the increasing tension as if the receptor responded to the tension oscillations rather than to the mean level of tension. The only visible effect of the gradual increase in mean tension on the tendon organ response was a gradual decrease of the delay between each stimulus and the corresponding impulse. Driving of tendon organ discharge at the stimulation frequency occurred not only when relatively large oscillations were superimposed on a low level of static tension but also when the static component of the tension was quantitatively preponderant. These observations suggest that during unfused contractions the dynamic component of the stimulus (i.e., oscillation of tension) exerts a prevailing influence on the discharge pattern of tendon organs. Computed simulations of tendon organ responses confirmed that a relatively strong dynamic sensitivity could account for the observed behavior of the receptor.


Sign in / Sign up

Export Citation Format

Share Document