Cross-correlation analysis of connectivities among cat lumbosacral dorsal horn cells

1979 ◽  
Vol 42 (5) ◽  
pp. 1199-1211 ◽  
Author(s):  
P. B. Brown ◽  
H. R. Koerber ◽  
R. P. Yezierski

1. Eighty-three cell pairs were recorded in dorsal horns of 19 cats. Cross-correlograms were flat in 65 cell pairs; of the remaining 18 pairs, cross-correlograms had broad peaks or troughs suggestive of nonmonosynaptic causal relations in their discharges; one cell pair had a biphasic deviation from base line. 2. No cross-correlograms indicative of monosynaptic interactions were observed. 3. All cell pairs with nonflat cross-correlograms had overlapping receptive fields. 4. It is concluded that monosynaptically connected cell pairs are rare at the interelectrode distances used in this experiment because such cell pairs must lie close together on the somatotopic map or because our recording methods bias against monosynaptically linked cell pairs.

1986 ◽  
Vol 55 (5) ◽  
pp. 1030-1043 ◽  
Author(s):  
A. Shosaku

Spontaneous activities of vibrissa-responding neurons in the rat ventrobasal complex (VB) and somatosensory part of the thalamic reticular nucleus (S-TR) were simultaneously recorded and subjected to cross-correlation analysis to investigate the functional organization of recurrent inhibitory action of the S-TR on VB neurons. Excitatory and/or inhibitory interactions were found between approximately 75% (25/34) of the pairs of S-TR and VB neurons with receptive fields (RFs) on the same vibrissa. In contrast, there was no significant interaction between 54 pairs of neurons having RFs on different vibrissae. Among the pairs of neurons with RFs on the same vibrissa, there were four types of correlations, which indicate the following connections: monosynaptic excitation from a VB to an S-TR neuron (7 pairs), monosynaptic inhibition from an S-TR to a VB neuron (10 pairs), reciprocal connection combining the above two types (7 pairs), and common excitation in addition to inhibition from an S-TR to a VB neuron (1 pair). Examples of divergence and convergence of connections between S-TR and VB neurons were demonstrated by testing one S-TR (VB) neuron with more than one VB (S-TR) neuron. Vibrissa-suppressed VB cells, which had exclusively inhibitory RFs, were included in eight pairs of the above samples. These VB cells were more likely to receive inhibitory inputs from S-TR neurons than other VB neurons. Cells with RFs on multiple vibrissae were included in the other 10 pairs. These multiple-vibrissa cells had no interaction with single-vibrissa cells but did with multiple-vibrissa cells. From the incidence of four types of correlation between S-TR and VB neurons with RFs on the same vibrissa, the following connection pattern is suggested: One S-TR neuron receives excitatory inputs from approximately 40% of the VB neurons with RFs on the same vibrissa and sends inhibitory outputs to approximately 55%. Since these two groups of VB neurons were overlapping, the S-TR neuron has reciprocal connections with approximately 20% of the VB neurons with RFs on the same vibrissa. The same estimate was applied to connectivity of one VB neuron. These results indicate that both inputs and outputs of S-TR neurons are precisely and topographically organized, although there is convergence to and divergence from a substantial number of VB neurons with RFs on the same vibrissa. It is proposed that the recurrent inhibitory circuit through the S-TR plays a role in improving discrimination of sensory information transmitted through the VB.


1999 ◽  
Vol 16 (6) ◽  
pp. 1001-1014 ◽  
Author(s):  
HIROSHI ISHIKANE ◽  
AKIO KAWANA ◽  
MASAO TACHIBANA

In the visual system, nearby neurons of similar functional type have a tendency to fire synchronously. Cross-correlation analysis of spike discharges recorded from pairs of neurons has revealed that the synchronized activity is frequently associated with oscillatory firing patterns. However, the underlying neural mechanisms and functions of synchronization and oscillations are not well understood. In the present study, we simultaneously recorded spike discharges from multiple OFF-sustained type ganglion cells with no antagonistic surround (the dimming detectors) of the frog retina using a planar multi-electrode array and analyzed the temporal properties of light-evoked spike discharges. With full-field, temporally modulated diffuse illumination, cross-correlation analysis revealed the presence of the synchronous oscillatory pattern. The strength of the synchronized activity decreased slightly with increased intercellular distance. Synchronized spike discharges were detected even in cell pairs more than 2 mm apart. The frequency of oscillations peaked at approximately 30 Hz. The shuffled cross-correlogram was nearly flat, indicating that the synchronous oscillatory activities are most probably of neural origin. When GABAA antagonists were applied to the retina, oscillations were suppressed almost completely and the strength of the synchronized activity decreased with increased intercellular distance more sharply than control. When small spot illumination was applied to the overlapping receptive fields of an adjacent cell pair, a weak synchronized activity was evoked without accompanying oscillations. The same cell pair generated a strong synchronized activity accompanied with oscillations with full-field illumination. Our results suggest that local synchronous activities are generated via short-range neural interactions, and that the oscillatory activities are induced by long-range neural interactions and may contribute to the establishment of synchrony between widely separated neuronal populations.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

2010 ◽  
Vol 09 (02) ◽  
pp. 203-217 ◽  
Author(s):  
XIAOJUN ZHAO ◽  
PENGJIAN SHANG ◽  
YULEI PANG

This paper reports the statistics of extreme values and positions of extreme events in Chinese stock markets. An extreme event is defined as the event exceeding a certain threshold of normalized logarithmic return. Extreme values follow a piecewise function or a power law distribution determined by the threshold due to a crossover. Extreme positions are studied by return intervals of extreme events, and it is found that return intervals yield a stretched exponential function. According to correlation analysis, extreme values and return intervals are weakly correlated and the correlation decreases with increasing threshold. No long-term cross-correlation exists by using the detrended cross-correlation analysis (DCCA) method. We successfully introduce a modification specific to the correlation and derive the joint cumulative distribution of extreme values and return intervals at 95% confidence level.


Sign in / Sign up

Export Citation Format

Share Document