A comparison of visual-response properties in cat's parabigeminal nucleus and superior colliculus

1979 ◽  
Vol 42 (6) ◽  
pp. 1640-1655 ◽  
Author(s):  
H. Sherk

1. The visual-response properties of single cells in the cat's superior colliculus and parabigeminal nucleus were compared. In the colliculus, 151 cells (restricted to the upper layer) were studied, and in the parabigeminal nucleus, 134 cells. 2. Response characteristics in the two structures were similar in many respects: among these were receptive-field size, ocular dominance, and lack of specificity for stimulus shape and contrast (light versus dark). 3. Quantitatively, there were some significant differences between the two populations of cells. Parabigeminal neurons tended to respond more brisky and reliably, while being less selective for those stimulus parameters tested (size, velocity, and direction of movement). Spontaneous activity was much higher in the parabigeminal nucleus than in the colliculus. Finally, parabigeminal cell responses to stationary stimuli were somewhat brisker than those of tectal cells. 4. These data suggest that a physiologically distinct population of tectal cells sends input to the parabigeminal nucleus, probably with some convergence on individual cells.

1997 ◽  
Vol 78 (5) ◽  
pp. 2732-2741 ◽  
Author(s):  
M. T. Wallace ◽  
J. G. McHaffie ◽  
B. E. Stein

Wallace M. T., J. G. McHaffie, and B. E. Stein. Visual response properties and visuotopic representation in the newborn monkey superior colliculus. J. Neurophysiol. 78: 2732–2741, 1997. Visually responsive neurons were recorded in the superior colliculus (SC) of the newborn rhesus monkey. The receptive fields of these neurons were larger than those in the adult, but already were organized into a well-ordered map of visual space that was very much like that seen in mature animals. This included a marked expansion of the representation of the central 10° of the visual field and a systematic foveal to peripheral increase in receptive field size. Although newborn SC neurons had longer response latencies than did their adult counterparts, they responded vigorously to visual stimuli and exhibited many visual response properties that are characteristic of the adult. These included surround inhibition, within-field spatial summation, within-field spatial inhibition, binocularity, and an adult-like ocular dominance distribution. As in the adult, SC neurons in the newborn preferred a moving visual stimulus and had adult-like selectivities for stimulus speed. The developmentally advanced state of the functional circuitry of the newborn monkey SC contrasts with the comparative immaturity of neurons in its visual cortex. It also contrasts with observations on the state of maturation of the newborn SC in other developmental models (e.g., cat). The observation that extensive visual experience is not necessary for the development of many adult-like SC response properties in the monkey SC may help explain the substantial visual capabilities shown by primates soon after birth.


1981 ◽  
Vol 45 (3) ◽  
pp. 397-416 ◽  
Author(s):  
J. F. Baker ◽  
S. E. Petersen ◽  
W. T. Newsome ◽  
J. M. Allman

1. The response properties of 354 single neurons in the medial (M), dorsomedial (DM), dorsolateral (DL), and middle temporal (MT) visual areas were studied quantitatively with bar, spot, and random-dot stimuli in chronically implanted owl monkeys with fixed gaze. 2. A directionality index was computed to compare the responses to stimuli in the optimal direction with the responses to the opposing direction of movement. The greater the difference between opposing directions, the higher the index. MT cells had much higher direction indices to moving bars than cells in DL, DM, and M. 3. A tuning index was computed for each cell to compare the responses to bars moving in the optimal direction, or flashed in the optimal orientation, with the responses in other directions or orientations within +/- 90 degrees. Cells in all four areas were more sharply tuned to the orientation of stationary flashed bars than to moving bars, although a few cells (9/92( were unresponsive in the absence of movement. DM cells tended to be more sharply tuned to moving bars than cells in the other areas. 4. Directionality in DM, DL, and MT was relatively unaffected by the use of single-spot stimuli instead of bars; tuning in all four areas was broader to spots than bars. 5. Moving arrays of randomly spaced spots were more strongly excitatory than bar stimuli for many neurons in MT (16/31 cells). These random-dot stimuli were also effective in M, but evoked no response or weak responses from most cells in DM and DL. 6. The best velocities of movement were usually in the range of 10-100 degrees/s, although a few cells (22/227), primarily in MT (14/69 cells), preferred higher velocities. 7. Receptive fields of neurons in all four areas were much larger than striate receptive fields. Eccentricity was positively correlated with receptive-field size (r = 0.62), but was not correlated with directionality index, tuning index, or best velocity. 8. The results support the hypothesis that there are specializations of function among the cortical visual areas.


1989 ◽  
Vol 3 (3) ◽  
pp. 249-265 ◽  
Author(s):  
Helen Sherk

AbstractThe existence of multiple areas of extrastriate visual cortex raises the question of how the response properties of each area are derived from its visual input. This question was investigated for one such area in the cat, referred to here as the Clare-Bishop area (Hubel & Wiesel, 1969); it is the region of lateral suprasylvian cortex that receives input from area 17. A novel approach was used, in which kainic acid was injected locally into the Clare-Bishop area, making it possible to record directly from afferent inputs.The response properties of the great majority of a sample of 424 presumed afferents resembled cells in areas 17 and 18. Thus, a systematic comparison was made with cells from area 17's upper layers, the source of its projection to the Clare-Bishop area (Gilbert & Kelly, 1975), to see whether these afferents had distinctive properties that might distinguish them from cells projecting to areas 18 or 19. Some differences did emerge: (1) The smallest receptive fields typical of area 17 were relatively scarce among afferents. (2) Direction-selective afferents were more abundant than were such cells in area 17. (3) End-stopped afferents were extremely rare, although end-stopped cells were common in area 17's upper layers.Despite these differences, afferents were far more similar in their properties to cells in areas 17 and 18 than to cells in the Clare-Bishop area. Compared to the latter, afferents showed major discrepancies in receptive-field size, in direction selectivity, in end-stopping, and in ocular dominance distribution. These differences seem most likely to stem from circuitry intrinsic to the Clare-Bishop area.


2013 ◽  
Vol 110 (6) ◽  
pp. 1333-1345 ◽  
Author(s):  
Iain Stitt ◽  
Edgar Galindo-Leon ◽  
Florian Pieper ◽  
Gerhard Engler ◽  
Andreas K. Engel

In the superior colliculus (SC), visual afferent inputs from various sources converge in a highly organized way such that all layers form topographically aligned representations of contralateral external space. Despite this anatomical organization, it remains unclear how the layer-specific termination of different visual input pathways is reflected in the nature of visual response properties and their distribution across layers. To uncover the physiological correlates underlying the laminar organization of the SC, we recorded multiunit and local field potential activity simultaneously from all layers with dual-shank multichannel linear probes. We found that the location of spatial receptive fields was strongly conserved across all visual responsive layers. There was a tendency for receptive field size to increase with depth in the SC, with superficial receptive fields significantly smaller than deep receptive fields. Additionally, superficial layers responded significantly faster than deeper layers to flash stimulation. In some recordings, flash-evoked responses were characterized by the presence of gamma oscillatory activity (40–60 Hz) in multiunit and field potential signals, which was strongest in retinorecipient layers. While SC neurons tended to respond only weakly to full-field drifting gratings, we observed very similar oscillatory responses to the offset of grating stimuli, suggesting gamma oscillations are produced following light offset. Oscillatory spiking activity was highly correlated between horizontally distributed neurons within these layers, with oscillations temporally locked to the stimulus. Together, visual response properties provide physiological evidence reflecting the laminar-specific termination of visual afferent pathways in the SC, most notably characterized by the oscillatory entrainment of superficial neurons.


2000 ◽  
Vol 17 (2) ◽  
pp. 283-289 ◽  
Author(s):  
K.E. BINNS ◽  
T.E. SALT

In the rat, the superficial gray layer (SGS) of the superior colliculus receives glutamatergic projections from the contralateral retina and from the visual cortex. A few fibers from the ipsilateral retina also directly innervate the SGS, but most of the ipsilateral visual input is provided by cholinergic afferents from the opposing parabigeminal nucleus (PBG). Thus, visual input carried by cholinergic afferents may have a functional influence on the responses of SGS neurones. When single neuronal extracellular recording and iontophoretic drug application were employed to examine this possibility, cholinergic agonists were found to depress responses to visual stimulation. Lobeline and 1-acetyl-4-methylpiperazine both depressed visually evoked activity and had a tendency to reduce the background firing rate of the neurones. Carbachol depressed the visual responses without any significant effect on the ongoing activity, while the muscarinic receptor selective agonist methacholine increased the background activity of the neurones and reduced their visual responses. Lobeline was chosen for further studies on the role of nicotinic receptors in SGS. Given that nicotinic receptors are associated with retinal terminals in SGS, and that the activation of presynaptic nicotinic receptors normally facilitates transmitter release (in this case glutamate release), the depressant effects of nicotinic agonists are intriguing. However, many retinal afferents contact inhibitory neurones in SGS; thus it is possible that the increase in glutamate release in turn facilitates the liberation of GABA which goes on to inhibit the visual responses. We therefore attempted to reverse the effects of lobeline with GABA receptor antagonists. The depressant effects of lobeline on the visual response could not be reversed by the GABAA antagonist bicuculline, but the GABAB antagonist CGP 35348 reduced the effects of lobeline. We hypothesize that cholinergic drive from the parabigeminal nucleus may activate presynaptic nicotinic receptors on retinal terminals, thereby facilitating the release of glutamate onto inhibitory neurones. Consequently GABA is released, activating GABAB receptors, and thus the ultimate effect of nicotinic receptor activation is to depress visual responses.


2018 ◽  
Author(s):  
Katja Reinhard ◽  
Chen Li ◽  
Quan Do ◽  
Emily Burke ◽  
Steven Heynderickx ◽  
...  

AbstractUsing sensory information to trigger different behaviours relies on circuits that pass-through brain regions. However, the rules by which parallel inputs are routed to different downstream targets is poorly understood. The superior colliculus mediates a set of innate behaviours, receiving input from ~30 retinal ganglion cell types and projecting to behaviourally important targets including the pulvinar and parabigeminal nucleus. Combining transsynaptic circuit tracing with in-vivo and ex-vivo electrophysiological recordings we observed a projection specific logic where each collicular output pathway sampled a distinct set of retinal inputs. Neurons projecting to the pulvinar or parabigeminal nucleus uniquely sampled 4 and 7 cell types, respectively. Four others innervated both pathways. The visual response properties of retinal ganglion cells correlated well with those of their disynaptic targets. These findings suggest that projection specific sampling of retinal inputs forms a mechanistic basis for the selective triggering of visually guided behaviours by the superior colliculus.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Katja Reinhard ◽  
Chen Li ◽  
Quan Do ◽  
Emily G Burke ◽  
Steven Heynderickx ◽  
...  

Using sensory information to trigger different behaviors relies on circuits that pass through brain regions. The rules by which parallel inputs are routed to downstream targets are poorly understood. The superior colliculus mediates a set of innate behaviors, receiving input from >30 retinal ganglion cell types and projecting to behaviorally important targets including the pulvinar and parabigeminal nucleus. Combining transsynaptic circuit tracing with in vivo and ex vivo electrophysiological recordings, we observed a projection-specific logic where each collicular output pathway sampled a distinct set of retinal inputs. Neurons projecting to the pulvinar or the parabigeminal nucleus showed strongly biased sampling from four cell types each, while six others innervated both pathways. The visual response properties of retinal ganglion cells correlated well with those of their disynaptic targets. These findings open the possibility that projection-specific sampling of retinal inputs forms a basis for the selective triggering of behaviors by the superior colliculus.


Sign in / Sign up

Export Citation Format

Share Document