Functional organization of neurons in cat striate cortex: variations in ocular dominance and receptive-field type with cortical laminae and location in visual field

1982 ◽  
Vol 48 (6) ◽  
pp. 1362-1377 ◽  
Author(s):  
N. Berman ◽  
B. R. Payne ◽  
D. R. Labar ◽  
E. H. Murphy

1. Binocularity and receptive-field type of cortical neurons were assessed relative to the cortical layer in which the neurons were recorded and to receptive-field position in the visual field. 2. Receptive fields were observed up to 2 degrees into the ipsilateral half of the visual field. In the region up to 2 degrees on either side of the vertical meridian, the relative contribution of the ipsilateral eye was reduced. This progression in ocular dominance from ipsilateral to contralateral visual field agrees well with the distribution of X-cells about the nasotemporal division. 3. The region of maximum binocularity in each hemifield was found to be a 12 degree wide vertical strip extending from the vertical meridian to 12 degrees contralateral. In the representation of the central 12 degree strip, most units in all cortical layers were binocular. 4. Low levels of binocularity were observed at a considerable distance before the monocular portion of the visual field was reached. 5. The decrease in binocularity for simple cells occurred closer to the vertical meridian than for complex cells. 6. The proportions of cells classified as simple or complex did not change with position in the visual field. 7. At all locations in the visual field, complex cells showed a higher percentage of binocularity than simple cells. 8. The proportions of two types of simple cells, I and II, and complex cells were variable between cortical layers. Layer IV contained predominantly simple II cells, whereas layer V contained predominantly complex cells. 9. The results are discussed in terms of visual perception and the dynamic pattern of visual stimulation around a moving animal, the optic flow field.

1976 ◽  
Vol 39 (3) ◽  
pp. 512-533 ◽  
Author(s):  
J. R. Wilson ◽  
S. M. Sherman

1. Receptive-field properties of 214 neurons from cat striate cortex were studied with particular emphasis on: a) classification, b) field size, c) orientation selectivity, d) direction selectivity, e) speed selectivity, and f) ocular dominance. We studied receptive fields located throughtout the visual field, including the monocular segment, to determine how receptivefield properties changed with eccentricity in the visual field.2. We classified 98 cells as "simple," 80 as "complex," 21 as "hypercomplex," and 15 in other categories. The proportion of complex cells relative to simple cells increased monotonically with receptive-field eccenticity.3. Direction selectivity and preferred orientation did not measurably change with eccentricity. Through most of the binocular segment, this was also true for ocular dominance; however, at the edge of the binocular segment, there were more fields dominated by the contralateral eye.4. Cells had larger receptive fields, less orientation selectivity, and higher preferred speeds with increasing eccentricity. However, these changes were considerably more pronounced for complex than for simple cells.5. These data suggest that simple and complex cells analyze different aspects of a visual stimulus, and we provide a hypothesis which suggests that simple cells analyze input typically from one (or a few) geniculate neurons, while complex cells receive input from a larger region of geniculate neurons. On average, this region is invariant with eccentricity and, due to a changing magnification factor, complex fields increase in size with eccentricity much more than do simple cells. For complex cells, computations of this geniculate region transformed to cortical space provide a cortical extent equal to the spread of pyramidal cell basal dendrites.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1994 ◽  
Vol 11 (4) ◽  
pp. 703-720 ◽  
Author(s):  
Ming Sun ◽  
A. B. Bonds

AbstractThe two-dimensional organization of receptive fields (RFs) of 44 cells in the cat visual cortex and four cells from the cat LGN was measured by stimulation with either dots or bars of light. The light bars were presented in different positions and orientations centered on the RFs. The RFs found were arbitrarily divided into four general types: Punctate, resembling DOG filters (11%); those resembling Gabor filters (9%); elongate (36%); and multipeaked-type (44%). Elongate RFs, usually found in simple cells, could show more than one excitatory band or bifurcation of excitatory regions. Although regions inhibitory to a given stimulus transition (e.g. ON) often coincided with regions excitatory to the opposite transition (e.g. OFF), this was by no means the rule. Measurements were highly repeatable and stable over periods of at least 1 h. A comparison between measurements made with dots and with bars showed reasonable matches in about 40% of the cases. In general, bar-based measurements revealed larger RFs with more structure, especially with respect to inhibitory regions. Inactivation of lower cortical layers (V-VI) by local GABA injection was found to reduce sharpness of detail and to increase both receptive-field size and noise in upper layer cells, suggesting vertically organized RF mechanisms. Across the population, some cells bore close resemblance to theoretically proposed filters, while others had a complexity that was clearly not generalizable, to the extent that they seemed more suited to detection of specific structures. We would speculate that the broadly varying forms of cat cortical receptive fields result from developmental processes akin to those that form ocular-dominance columns, but on a smaller scale.


1978 ◽  
Vol 41 (2) ◽  
pp. 285-304 ◽  
Author(s):  
A. Antonini ◽  
G. Berlucchi ◽  
J. M. Sprague

1. In agreement with previous work, we have found that the ipsilateral visual field is represented in an extensive rostral portion--from one-third to one-half--of the superior colliculus (SC) of the cat. This representation is binocular. The SC representation of the ipsilateral visual field can be mediated both directly, by crossed retinotectal connections originating from temporal hemiretina, and indirectly, by across-the-midline connections relaying visual information from one-half of the brain to contralateral SC. 2. In order to study the indirect, across-the-midline visual input to the SC, we have recorded responses of SC neurons to visual stimuli presented to either the ipsilateral or the contralateral eye of cats with a midsagittal splitting of the optic chiasm. Units driven by the ipsilateral eye, presumably through the direct retinotectal input and/or corticotectal connections from ipsilateral visual cortex, were found throughout the SC, except at its caudal pole, which normally receives fibers from the extreme periphery of the contralateral nasal hemiretina. Units driven by the contralateral eye, undoubtedly through an indirect across-the-midline connection, were found only in the anterior portion of the SC, in which is normally represented the ipsilateral visual field. Receptive fields in both ipsilateral and contralateral eye had properties typical of SC receptive fields in cats with intact optic pathways. 3. All units having a receptive field in the contralateral eye had also a receptive field in the ipsilateral eye; for each of these units, the receptive fields in both eyes invariably abutted the vertical meridian of the visual field. The receptive field in one eye had about the same elevation relative to the horizontal meridian and the same vertical extension as the receptive field in the other eye; the two receptive fields of each binocular unit matched each other at the vertical meridian and formed a combined receptive field straddling the vertical midline of the horopter...


1999 ◽  
Vol 82 (6) ◽  
pp. 3082-3094 ◽  
Author(s):  
D. C. Kiper ◽  
M. G. Knyazeva ◽  
L. Tettoni ◽  
G. M. Innocenti

In recent years, the analysis of the coherence between signals recorded from the scalp [electroencephalographic (EEG) coherence] has been used to assess the functional properties of cortico-cortical connections, both in animal models and in humans. However, the experimental validation of this technique is still scarce. Therefore we applied it to the study of the callosal connections between the visual areas of the two hemispheres, because this particular set of cortico-cortical connections can be activated in a selective way by visual stimuli. Indeed, in primary and in low-order secondary visual areas, callosal axons interconnect selectively regions, which represent a narrow portion of the visual field straddling the vertical meridian and, within these regions, neurons that prefer the same stimulus orientation. Thus only isooriented stimuli located near the vertical meridian are expected to change interhemispheric coherence by activating callosal connections. Finally, if such changes are found and are indeed mediated by callosal connections, they should disappear after transection of the corpus callosum. We perfomed experiments on seven paralyzed and anesthetized ferrets, recording their cortical activity with epidural electrodes on areas 17/18, 19, and lateral suprasylvian, during different forms of visual stimulation. As expected, we found that bilateral iso-oriented stimuli near the vertical meridian, or extending across it, caused a significant increase in interhemispheric coherence in the EEG beta-gamma band. Stimuli with different orientations, stimuli located far from the vertical meridian, as well as unilateral stimuli failed to affect interhemispheric EEG coherence. The stimulus-induced increase in coherence disappeared after surgical transection of the corpus callosum. The results suggest that the activation of cortico-cortical connections can indeed be revealed as a change in EEG coherence. The latter can therefore be validly used to investigate the functionality of cortico-cortical connections.


1984 ◽  
Vol 52 (3) ◽  
pp. 570-594 ◽  
Author(s):  
B. R. Payne ◽  
H. E. Pearson ◽  
N. Berman

The short-term (3-51 days) and long-term (31-42 wk) effects of corpus callosum transection on the receptive-field properties of neurons were assessed at the single-cell, architectural, and topographical levels of organization in the cat striate cortex. Corpus callosum transection decreased the proportion of neurons that could be activated from both eyes. In short-term animals, the reduction in binocularity was restricted to the representation of a vertical strip of visual space extending from the vertical meridian to at least 12 degrees lateral. In the long-term animals, the reduction in binocularity was restricted to the representation of visual space 4 degrees lateral to the vertical meridian. Therefore, the reduction in the representation of 4-12 degrees was only temporary. In both groups, the reduction in binocularity was less in the representation of area centralis than at other retinal locations in the same vertical strip. The region of area 17 affected permanently by the transection receives fibers from the contralateral hemisphere in normal animals. The region affected temporarily by the transection contains callosal cells but does not contain callosal terminals. Binocularity was assessed separately for simple I, simple II, and complex receptive-field types. The reduction in binocularity in the 12 degrees strip in short-term animals and in the 4 degrees strip in long-term animals was accounted for mainly by a reduction in binocularity of simple I and complex cells. As in normal animals, complex cells in callosum-transected cats were always more binocular than the other cell types. An analysis of the effects of corpus callosum transection on different cortical layers showed that a greater proportion of cells in the supragranular layers II and III showed a reduction in binocularity than in the infragranular layers V and VI. The proportion of binocular neurons in layer IV was not significantly different from normal. The major decreases in binocularity occurred in layers II, III, and VI for simple I and simple II cells and in layers II, III, and V for complex cells. The binocularity of simple II cells in layer IV and complex cells in layer VI was not affected. The effects of the transection on the columnar organization of the cortex were assessed by making electrode tracks that passed in the radial or laminar dimensions of the cortex. Reconstructions of the radial tracks showed that cells within one radial column tended to be dominated by the same eye. In adjacent columns, cells tended to be dominated by different eyes.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 72 (3) ◽  
pp. 1290-1303 ◽  
Author(s):  
G. M. Ghose ◽  
R. D. Freeman ◽  
I. Ohzawa

1. We have studied the nature, development, and plasticity of local intracortical interactions by examining the visual responses from pairs of cells in the visual cortex of anesthetized and paralyzed adult cats and kittens at postnatal age 4 wk. Simultaneous discharge from nearby cells was analyzed by the cross-correlation method to infer three types of neuronal interactions: monosynaptic excitation, monosynaptic inhibition, and polysynaptic excitation. 2. Among cell pairs that exhibit correlated discharge, the nature of these interactions is similar in kittens and adults. For example, the mean monosynaptic delay is the same for cell pairs in the adult cat and the kitten: 0.8 ms. The primary difference in the distribution of neural interactions is the increased prevalence of inhibitory interactions among adult cat cell pairs compared with kitten cell pairs. However, in both age groups and in nearly all laminae, polysynaptic interactions are the most commonly observed type of interaction. 3. Neural interactions revealed by cross-correlation analysis also were studied with respect to the receptive field properties of the cells. The hierarchical theory proposed by Hubel and Wiesel suggests that monosynaptic excitation should be seen from simple to complex cells. It further suggests that complex cells do not provide monosynaptic excitation either to simple or to other complex cells. However, we find no cases of monosynaptic excitation from simple to complex cells in the adult cat. Moreover, we find explicitly antihierarchical connections, i.e., excitatory connections from complex to simple cells, in both kittens and adults. The excitatory influence of complex cells on simple cell receptive field properties is not incorporated into current models of receptive field structure formation. Our results suggest that complex cells might have an important modulatory role in simple cell discharge. 4. Plasticity of intracortical synaptic connections was studied by examining the dynamics of monosynaptic peaks with cross-correlograms. We examined Hebb's seminal hypothesis regarding synaptic plasticity that the excitatory connections between two neurons should strengthen with simultaneous activity. To test directly whether Hebbian plasticity can be rapidly induced by stimulus-evoked activity, the strength of monosynaptic excitation between pairs of neurons was monitored during periods of visual stimulation lasting < or = 2 h. Synaptic strength was computed by summing the cross-correlogram bins containing the monosynaptic peak. Transient increases in monosynaptic peak area are found among cell pairs linked by monosynaptic excitation after 8-15 min of visual stimulation. The duration and amplitude of these changes are similar in adult cats and kittens.(ABSTRACT TRUNCATED AT 400 WORDS)


2011 ◽  
Vol 106 (3) ◽  
pp. 1179-1190 ◽  
Author(s):  
Wilsaan M. Joiner ◽  
James Cavanaugh ◽  
Robert H. Wurtz

In the monkey frontal eye field (FEF), the sensitivity of some neurons to visual stimulation changes just before a saccade. Sensitivity shifts from the spatial location of its current receptive field (RF) to the location of that field after the saccade is completed (the future field, FF). These shifting RFs are thought to contribute to the stability of visual perception across saccades, and in this study we investigated whether the salience of the FF stimulus alters the magnitude of FF activity. We reduced the salience of the usually single flashed stimulus by adding other visual stimuli. We isolated 171 neurons in the FEF of 2 monkeys and did experiments on 50 that had FF activity. In 30% of these, that activity was higher before salience was reduced by adding stimuli. The mean magnitude reduction was 16%. We then determined whether the shifting RFs were more frequent in the central visual field, which would be expected if vision across saccades were only stabilized for the visual field near the fovea. We found no evidence of any skewing of the frequency of shifting receptive fields (or the effects of salience) toward the central visual field. We conclude that the salience of the FF stimulus makes a substantial contribution to the magnitude of FF activity in FEF. In so far as FF activity contributes to visual stability, the salience of the stimulus is probably more important than the region of the visual field in which it falls for determining which objects remain perceptually stable across saccades.


2009 ◽  
Vol 102 (5) ◽  
pp. 2704-2718 ◽  
Author(s):  
Kaoru Amano ◽  
Brian A. Wandell ◽  
Serge O. Dumoulin

Human neuroimaging experiments typically localize motion-selective cortex (MT+) by contrasting responses to stationary and moving stimuli. It has long been suspected that MT+, located on the lateral surface at the temporal–occipital (TO) boundary, contains several distinct visual field maps, although only one coarse map has been measured. Using a novel functional MRI model–based method we identified two maps—TO-1 and TO-2—and measured population receptive field (pRF) sizes within these maps. The angular representation of the first map, TO-1, has a lower vertical meridian on its posterior side at the boundary with the lateral–occipital cortex (i.e., the LO-2 portion). The angular representation continues through horizontal to the upper vertical meridian at the boundary with the second map, TO-2. The TO-2 angle map reverses from upper to lower visual field at increasingly anterior positions. The TO maps share a parallel eccentricity map in which center-to-periphery is represented in the ventral-to-dorsal direction; both maps have an expanded foveal representation. There is a progressive increase in the pRF size from V1/2/3 to LO-1/2 and TO-1/2, with the largest pRF sizes in TO-2. Further, within each map the pRF size increases as a function of eccentricity. The visual field coverage of both maps extends into the ipsilateral visual field, with larger sensitivity to peripheral ipsilateral stimuli in TO-2 than that in TO-1. The TO maps provide a functional segmentation of human motion-sensitive cortex that enables a more complete characterization of processing in human motion-selective cortex.


Sign in / Sign up

Export Citation Format

Share Document