Periodic simple cells in cat area 17

1984 ◽  
Vol 52 (2) ◽  
pp. 372-387 ◽  
Author(s):  
W. H. Mullikin ◽  
J. P. Jones ◽  
L. A. Palmer

Quantitative, high-resolution static receptive-field plots (response planes) in cat area 17 revealed simple cells whose receptive fields were composed of four to six excitatory regions alternating in space with up to seven inhibitory regions. The size, shape, and spacing of the excitatory regions within these receptive fields were highly regular, giving the receptive field a periodic appearance in space. We call these periodic simple cells. A periodic simple cell's response to moving stimuli could, in general, be anticipated from the detailed spatiotemporal map of excitatory and inhibitory regions provided by response planes. This observation suggests that periodic simple cells, like the more common simple cells composed of one to three excitatory regions, sum spatially distributed inputs in a roughly linear manner. Based on a quantitative assessment of the spatial distribution and time course of response of single excitatory regions within periodic receptive fields, as described in the previous paper, we characterized periodic simple cells as either X-like or Y-like. Furthermore, we found that periodic simple cells classified as X-like gave a more sustained response to standing contrast and had significantly smaller excitatory regions than those cells classified as Y-like. Periodic simple cells were found in layer III and at the border between layers III and IVab. It is suggested that these cells, which reside outside the primary zone of geniculate termination and include both X-like and Y-like types, may be constructed hierarchically from the convergence of lower order simple cells. In the spatial-frequency domain, periodic simple receptive fields were predicted to have bandwidths at half-maximum ranging from 0.80 to 1.4 octaves. By comparison, the predicted bandwidths of cells composed of two or three excitatory regions ranged from 1.6 to 4.3 octaves. Thus as additional excitatory regions are added to the receptive fields of simple cells, their bandwidth narrows in the spatial-frequency domain.

2005 ◽  
Vol 93 (6) ◽  
pp. 3537-3547 ◽  
Author(s):  
Chong Weng ◽  
Chun-I Yeh ◽  
Carl R. Stoelzel ◽  
Jose-Manuel Alonso

Each point in visual space is encoded at the level of the thalamus by a group of neighboring cells with overlapping receptive fields. Here we show that the receptive fields of these cells differ in size and response latency but not at random. We have found that in the cat lateral geniculate nucleus (LGN) the receptive field size and response latency of neighboring neurons are significantly correlated: the larger the receptive field, the faster the response to visual stimuli. This correlation is widespread in LGN. It is found in groups of cells belonging to the same type (e.g., Y cells), and of different types (i.e., X and Y), within a specific layer or across different layers. These results indicate that the inputs from the multiple geniculate afferents that converge onto a cortical cell (approximately 30) are likely to arrive in a sequence determined by the receptive field size of the geniculate afferents. Recent studies have shown that the peak of the spatial frequency tuning of a cortical cell shifts toward higher frequencies as the response progresses in time. Our results are consistent with the idea that these shifts in spatial frequency tuning arise from differences in the response time course of the thalamic inputs.


2010 ◽  
Vol 103 (2) ◽  
pp. 677-697 ◽  
Author(s):  
Lionel G. Nowak ◽  
Maria V. Sanchez-Vives ◽  
David A. McCormick

The aim of the present study was to characterize the spatial and temporal features of synaptic and discharge receptive fields (RFs), and to quantify their relationships, in cat area 17. For this purpose, neurons were recorded intracellularly while high-frequency flashing bars were used to generate RFs maps for synaptic and spiking responses. Comparison of the maps shows that some features of the discharge RFs depended strongly on those of the synaptic RFs, whereas others were less dependent. Spiking RF duration depended poorly and spiking RF amplitude depended moderately on those of the underlying synaptic RFs. At the other extreme, the optimal spatial frequency and phase of the discharge RFs in simple cells were almost entirely inherited from those of the synaptic RFs. Subfield width, in both simple and complex cells, was less for spiking responses compared with synaptic responses, but synaptic to discharge width ratio was relatively variable from cell to cell. When considering the whole RF of simple cells, additional variability in width ratio resulted from the presence of additional synaptic subfields that remained subthreshold. Due to these additional, subthreshold subfields, spatial frequency tuning predicted from synaptic RFs appears sharper than that predicted from spiking RFs. Excitatory subfield overlap in spiking RFs was well predicted by subfield overlap at the synaptic level. When examined in different regions of the RF, latencies appeared to be quite variable, but this variability showed negligible dependence on distance from the RF center. Nevertheless, spiking response latency faithfully reflected synaptic response latency.


1998 ◽  
Vol 80 (6) ◽  
pp. 2991-3004 ◽  
Author(s):  
Allen L. Humphrey ◽  
Alan B. Saul

Humphrey, Allen L. and Alan B. Saul. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. J. Neurophysiol. 80: 2991–3004, 1998. Direction selectivity in simple cells of cat area 17 is linked to spatiotemporal (S-T) receptive-field structure. S-T inseparable receptive fields display gradients of response timing across the receptive field that confer a preferred direction of motion. Receptive fields that are not direction selective lack gradients; they are S-T separable, displaying uniform timing across the field. Here we further examine this link using a developmental paradigm that disrupts direction selectivity. Cats were reared from birth to 8 mo of age in 8-Hz stroboscopic illumination. Direction selectivity in simple cells was then measured using gratings drifting at different temporal frequencies (0.25–16 Hz). S-T structure was assessed using stationary bars presented at different receptive-field positions, with bar luminance being modulated sinusoidally at different temporal frequencies. For each cell, plots of response phase versus bar position were fit by lines to characterize S-T inseparability at each temporal frequency. Strobe rearing produced a profound loss of direction selectivity at all temporal frequencies; only 10% of cells were selective compared with 80% in normal cats. The few remaining directional cells were selective over a narrower than normal range of temporal frequencies and exhibited weaker than normal direction selectivity. Importantly, the directional loss was accompanied by a virtual elimination of S-T inseparability. Nearly all cells were S-T separable, like nondirectional cells in normal cats. The loss was clearest in layer 4. Normally, inseparability is greatest there, and it correlates well ( r = 0.77) with direction selectivity; strobe rearing reduced inseparability and direction selectivity to very low values. The few remaining directional cells were inseparable. In layer 6 of normal cats, most direction-selective cells are only weakly inseparable, and there is no consistent relationship between the two measures. However, after strobe rearing, even the weak inseparability was eliminated along with direction selectivity. The correlated changes in S-T structure and direction selectivity were confirmed using conventional linear predictions of directional tuning based on responses to counterphasing bars and white noise stimuli. The developmental changes were permanent, being observed up to 12 yr after strobe rearing. The deficits were remarkably specific; strobe rearing did not affect spatial receptive-field structure, orientation selectivity, spatial or temporal frequency tuning, or general responsiveness to visual stimuli. These results provide further support for a critical role of S-T structure in determining direction selectivity in simple cells. Strobe rearing eliminates directional tuning by altering the timing of responses within the receptive field.


1992 ◽  
Vol 68 (4) ◽  
pp. 1190-1208 ◽  
Author(s):  
A. B. Saul ◽  
A. L. Humphrey

1. The visual cortex receives several types of afferents from the lateral geniculate nucleus (LGN) of the thalamus. In the cat, previous work studied the ON/OFF and X/Y distinctions, investigating their convergence and segregation in cortex. Here we pursue the lagged/nonlagged dichotomy as it applies to simple cells in area 17. Lagged and nonlagged cells in the A-layers of the LGN can be distinguished by the timing of their responses to sinusoidally luminance-modulated stimuli. We therefore used similar stimuli in cortex to search for signs of lagged and nonlagged inputs to cortical cells. 2. Line-weighting functions were obtained from 37 simple cells. A bar was presented at a series of positions across the receptive field, with the luminance of the bar modulated sinusoidally at a series of temporal frequencies. First harmonic response amplitude and phase values for each position were plotted as a function of temporal frequency. Linear regression on the phase versus temporal frequency data provided estimates of latency (slope) and absolute phase (intercept) for each receptive-field position tested. These two parameters were previously shown to distinguish between lagged and nonlagged LGN cells. Lagged cells generally have latencies > 100 ms and absolute phase lags; nonlagged cells have latencies < 100 ms and absolute phase leads. With the use of these criteria, we classified responses at discrete positions inside cortical receptive fields as lagged-like and nonlagged-like. 3. Both lagged-like and nonlagged-like responses were observed. The majority of cortical cells had only or nearly only nonlagged-like zones. In 15 of the 37 cells, however, the receptive field consisted of > or = 20% lagged-like zones. For eight of these cells, lagged-like responses predominated. 4. The distribution of latency and absolute phase across the sample of cortical simple cell receptive fields resembled the distribution for LGN cells. The resemblance was especially striking when only cells in or adjacent to geniculate recipient layers were considered. Absolute phase lags were almost uniformly associated with long latencies. Absolute phase leads were generally associated with short latencies, although cortical cells responded with long latencies and absolute phase leads slightly more often than LGN cells. 5. Cells in which a high percentage of lagged-like responses were observed had a restricted laminar localization, with all but two being found in layer 4B or 5A. Cells with predominantly nonlagged-like responses were found in all layers. 6. Lagged-like zones can not be easily explained as a result of stimulating combinations of nonlagged inputs.(ABSTRACT TRUNCATED AT 400 WORDS)


2005 ◽  
Vol 93 (6) ◽  
pp. 3524-3536 ◽  
Author(s):  
Shinji Nishimoto ◽  
Miki Arai ◽  
Izumi Ohzawa

Orientation and spatial frequency selectivities are fundamental properties of cells in the early visual cortex. Although they are customarily tested with drifting sinusoidal gratings, a recently developed subspace reverse correlation method may be a better replacement for obtaining a selectivity map in a joint orientation and spatial frequency domain at higher resolution efficiently. These two methods are examined for their accuracy and data compatibility for cells in areas 17 and 18 of anesthetized and paralyzed cats. Peaks and bandwidths of tuning curves from these two methods are highly correlated. However, spatial frequency bandwidths obtained by reverse correlation tend to be slightly narrower for the subspace reverse correlation than those from the drifting grating tests. Consistency between the two methods is improved if the entire duration of data containing signal are taken into account for the subspace reverse correlation rather than using the map only at the optimal correlation delay. Examination of convergence of the subspace mapping process shows that reliable 2-day profiles can be obtained within 5–10 min. for the majority of cells. Temporal dynamics of tuning properties are also examined more directly with the subspace mapping than with the drifting gratings. For many cells, the optimal spatial frequency shifts substantially, measured as a fraction of tuning bandwidth, over the time course of response. In comparison, the optimal orientation remains highly stable throughout the duration of response. Overall, these results suggest that the subspace reverse correlation is a better substitute for the conventional method.


1999 ◽  
Vol 81 (3) ◽  
pp. 1212-1224 ◽  
Author(s):  
Aditya Murthy ◽  
Allen L. Humphrey

Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. Intracortical inhibition contributes to direction selectivity in primary visual cortex, but how it acts has been unclear. We investigated this problem in simple cells of cat area 17 by taking advantage of the link between spatiotemporal (S-T) receptive-field structure and direction selectivity. Most cells in layer 4 have S-T–oriented receptive fields in which gradients of response timing across the field confer a preferred direction of motion. Linear summation of responses across the receptive field, followed by a static nonlinear amplification, has been shown previously to account for directional tuning in layer 4. We tested the hypotheses that inhibition acts by altering S-T structure or the static nonlinearity or both. Drifting and counterphasing sinewave gratings were used to measure direction selectivity and S-T structure, respectively, in 17 layer 4 simple cells before and during iontophoresis of bicuculline methiodide (BMI), a GABAA antagonist. S-T orientation was quantified from fits to response temporal phase versus stimulus spatial phase data. Bicuculline reduced direction selectivity and S-T orientation in nearly all cells, and reductions in the two measures were well correlated ( r = 0.81) and reversible. Using conventional linear predictions based on response phase and amplitude, we found that BMI-induced changes in S-T structure also accounted well for absolute changes in the amplitude and phase of responses to gratings drifting in the preferred and nonpreferred direction. For each cell we also calculated an exponent used to estimate the static nonlinearity. Bicuculline reduced the exponent in most cells, but the changes were not correlated with reductions in direction selectivity. We conclude that GABAA-mediated inhibition influences directional tuning in layer 4 primarily by sculpting S-T receptive-field structure. The source of the inhibition is likely to be other simple cells with certain spatiotemporal relationships to their target. Despite reductions in the two measures, most receptive fields maintained some directional tuning and S-T orientation during BMI. This suggests that their excitatory inputs, arising from the lateral geniculate nucleus and within area 17, are sufficient to create some S-T orientation and that inhibition accentuates it. Finally, BMI also reduced direction selectivity in 8 of 10 simple cells tested in layer 6, but the reductions were not accompanied by systematic changes in S-T structure. This reflects the fact that S-T orientation, as revealed by our first-order measures of the receptive field, is weak there normally. Inhibition likely affects layer 6 cells via more complex, nonlinear interactions.


1987 ◽  
Vol 58 (6) ◽  
pp. 1212-1232 ◽  
Author(s):  
J. P. Jones ◽  
A. Stepnoski ◽  
L. A. Palmer

1. A quantitative, general purpose method was developed for measuring the responses of visual neurons to stimuli distributed with high resolution over the two-dimensional (2D) spatial frequency domain. The stimuli consisted of drifting sinusoidal gratings of nonsaturating contrasts whose spatial frequency and orientation were drawn in random order from a 16 X 16 array of coordinates covering each neuron's responsive area. This method was applied to a population of 36 simple cells in area 17 of cat. 2. The response of each simple cell to drifting sinusoidal gratings appeared as a rectified sinusoidal modulation of the spike frequency. The degree of rectification varied from cell to cell, but for each cell, the form of the response was constant irrespective of stimulus spatial frequency, orientation, or contrast. The amplitude of the average response at the stimulus temporal frequency was used as the response metric at all spectral coordinates. Variations in this amplitude over two spectral dimensions forms a surface that we call the 2D spectral response profile. 3. For each cell, the 2D spectral response profile was localized to a limited region of the complete 2D spatial frequency domain. In bidirectionally responsive cells, there were two lobes in the surface disposed with mirror symmetry about the origin. In all cells, each lobe exhibited a single maximum and the response decayed smoothly in every direction away from the maximum. Isoresponse amplitude contours were elliptical and often, but not always, elongated about an axis of symmetry passing through the origin. 4. We tested the hypothesis that orientation and spatial frequency tuning are independent by forming scaled radial and angular sections through 2D spectral response profiles. In virtually every case polar separability did not obtain, that is, orientation selectivity depended on spatial frequency and vice versa. 5. In contrast, more than half the cells had 2D spectral response profiles that were Cartesian separable. The 2D spectral response profiles of most of the remaining cells were neither polar nor Cartesian separable, because the response profiles were elongated about an axis of symmetry that did not pass through the origin. 6. These results are discussed in terms of the constraints they place on models of the contributions simple cells make toward the neural representation of images.


2017 ◽  
Vol 22 (7) ◽  
pp. 076007 ◽  
Author(s):  
Mira Sibai ◽  
Carl Fisher ◽  
Israel Veilleux ◽  
Jonathan T. Elliott ◽  
Frederic Leblond ◽  
...  

Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


Sign in / Sign up

Export Citation Format

Share Document