Central compensation of vestibular deficits. IV. Responses of lateral vestibular neurons to neck rotation after labyrinth deafferentation

1985 ◽  
Vol 54 (4) ◽  
pp. 1006-1025 ◽  
Author(s):  
C. Xerri ◽  
S. Gianni ◽  
D. Manzoni ◽  
O. Pompeiano

The response characteristics of neurons located in the lateral vestibular nucleus (LVN) to neck rotation at 0.026 Hz, 10 degrees peak displacement, have been investigated in precollicular decerebrate cats submitted to ipsilateral acute (aVN) or chronic vestibular neurectomy (cVN). On the whole, 105 units were tested after aVN (i.e., during the first postoperative hours) and 132 units after cVN (i.e., after full compensation of the postural and locomotor deficits). The neurons were histologically located either in the rostroventral (rvLVN) or the dorsocaudal part (dcLVN) of Deiters' nucleus, which are known to project mainly to the cervical and the lumbosacral cord, respectively. Moreover, 55 units in the former group and 66 units in the latter group were identified as vestibulospinal neurons projecting to lumbosacral segments of the spinal cord. The responses of these 237 LVN neurons to the neck input were then compared with those of 120 LVN neurons recorded previously in decerebrate cats with intact labyrinths. Whereas 58.3% of the LVN units recorded in control experiments were responsive to neck rotation, 69.5% of the units were affected by this stimulation at the acute stage of the neurectomy and 74.2% at the chronic stage. This increase in responsive units after aVN and cVN with respect to the controls was found exclusively in the dcLVN. The mean discharge rate of the responsive LVN neurons decreased from 40.7 +/- 48.9 (SD) imp/s in control experiments to 22.1 +/- 15.8 (SD) imp/s after a VN. Similar value was also obtained after cVN [25.0 +/- 17.2 (SD) imp/s], suggesting that compensation of the postural deficits elicited by the vestibular neurectomy results from a redistribution of the excitatory drive within different populations of LVN neurons. Indeed, the relation found in control experiments, i.e., that the faster the conduction velocity of vestibulospinal axons the lower was the unit discharge at rest, was lost after aVN, due to a decrease in resting discharge of the slow units. The mean discharge rate of the slow units, however, recovered after cVN, so that the negative correlation between resting discharge rate and axonal conduction velocity was reestablished. The average gain and sensitivity of the first harmonic response of the LVN neurons to neck rotation recorded after aVN and cVN were comparable to those obtained in preparations with the vestibular nerves intact.(ABSTRACT TRUNCATED AT 400 WORDS)

1985 ◽  
Vol 54 (4) ◽  
pp. 988-1005 ◽  
Author(s):  
M. Lacour ◽  
D. Manzoni ◽  
O. Pompeiano ◽  
C. Xerri

The responses of lateral vestibular nucleus (LVN) neurons to stimulation of macular labyrinth receptors have been investigated in precollicular decerebrate cats after contralateral acute vestibular neurectomy (aVN). On the whole, 78 LVN neurons were tested during slow sinusoidal tilt of the animal at the standard parameters (0.026 Hz, 10 degrees peak displacement). The neurons were located in both the rostroventral (rvLVN) and the dorsocaudal parts (dcLVN) of Deiters' nucleus, which project mainly to the cervical and the lumbosacral cord, respectively. After contralateral aVN, the proportions of responsive units in rvLVN and dcLVN (100% and 75.4%, respectively) were similar to those obtained in control experiments with intact labyrinths. However, the mean discharge rate of the responsive units slightly decreased with respect to the value obtained in control experiments, the decrease being more prominent within the rvLVN. The average sensitivity (and to a lesser extent the gain) of responses of rvLVN neurons to the labyrinth input was almost twice that of the dcLVN units in preparations with the vestibular nerves intact; these regional differences disappeared after contralateral aVN, particularly due to a decrease in gain and sensitivity of responses in the rvLVN. The proportion of LVN neurons that were maximally excited by animal position increased from 74.0% in the control experiments to 82.8%. However, while in control experiments the proportion of units excited during side-down tilt was twice as high as that of the units excited by side-up tilt, the opposite occurred after contralateral aVN; this finding affected particularly the dcLVN. In addition the average phase lead of responses relative to the extreme animal displacements slightly decreased from +12.3 degrees in control experiments to +9.4 degrees. Among the LVN neurons recorded after contralateral aVN, 35 were antidromically activated by stimulating the spinal cord at T12 L1, while 43 units were not activated. The relation found in control experiments, i.e., that the faster the conduction velocity of vestibulospinal axon the lower was the unit discharge at rest, was lost after contralateral aVN, due to a decrease in resting discharge rate of the slow neurons. This finding, coupled with the observation that slow and fast units did not show any difference in their response gain to tilt, explains why the positive correlation between axonal conduction velocity and response sensitivity occurring in control experiments was lost after contralateral aVN.(ABSTRACT TRUNCATED AT 400 WORDS)


1984 ◽  
Vol 52 (1) ◽  
pp. 18-38 ◽  
Author(s):  
O. Pompeiano ◽  
C. Xerri ◽  
S. Gianni ◽  
D. Manzoni

The activity of 168 Deiters' neurons projecting to lumbosacral segments of the spinal cord has been recorded in precollicular decerebrate cats after ipsilateral acute (aVN) or chronic vestibular neurectomy (cVN), and their response characteristics to sinusoidal stimulation of contralateral labyrinth receptors at the standard parameters (roll tilt at 0.026 Hz, 10 degrees peak displacement) have been related to cell size inferred from the conduction velocity of the corresponding axons. These findings were compared with those elicited in decerebrate cats with both vestibular nerves intact. In all experimental conditions, the higher the coefficient of variation (CV) of the vestibulospinal neurons, reflecting a more irregular unit discharge, the lower was the mean discharge rate at rest. However, the proportion of regularly discharging units (with the lowest CV) decreased after aVN but increased after cVN. The relation found in control experiments, i.e., the faster the conduction velocity of vestibulospinal axon the lower was the unit discharge at rest, was lost after aVN due to a decrease in resting discharge rate of the slow neurons. The mean discharge rate of these units, however, recovered after cVN, so that the negative correlation between resting discharge rate and axonal conduction velocity was reestablished. After aVN, the decrease in resting discharge rate of the slow vestibulospinal neurons was not associated with significant changes in gain (impulses per second per degree) of the unit responses to standard parameters of tilt, so that the sensitivity of these units (percentage change of the mean discharge rate per degree) increased; on the other hand, the resting discharge rate of the fast neurons, which remained almost unchanged after aVN, was associated with a significant increase in gain, thus leading to an average increase in response sensitivity of these units.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 99 (3) ◽  
pp. 221-227 ◽  
Author(s):  
Stephen P. Cass ◽  
Harry G. Goshgarian

Unilateral vestibular injury evokes a characteristic pattern of acute disorganization of posture, locomotion, and eye movements. Following this acute stage, functional recovery occurs. In the present study, unilateral labyrinthectomy and vestibular neurectomy were performed in cats. The lateral vestibular nucleus (LVN) and vestibular nerve root entry zone on both sides of the brain stem were examined 24 hours 3 days and 8 weeks after operation by use of an immunochemical astrocyte marker, glial fibrillary acidic protein (GFAP). The results demonstrate extensive GFAP immunoreactivity within the ipsilateral nerve root following neurectomy, but not after labyrinthectomy Prominent GFAP-immunoreactive astrocytic processes were detected in the LVN both ipsilateral and contralateral to neurectomy and labyrinthectomy Within the ipsilateral LVN, the intensity of GFAP immunoreactivity was greater following neurectomy than after labyrinthectomy but the pattern of GFAP reactivity remained similar. In the contralateral LVN, GFAP reactivity was noted exclusively in the dorsal-rostral region corresponding to the zone of cerebellar afferents to the LVN. The results of the present study suggest that reactive astroglia may play an important role in the mechanism that leads to vestibular compensation.


1976 ◽  
Vol 39 (1) ◽  
pp. 1-8 ◽  
Author(s):  
P. D. Cheney ◽  
J. B. Preston

A study was made of the response characteristics of spindle afferents in the baboon soleus muscle. Afferents were isolated from the dorsal roots, their conduction velocities were determined, and their responses were recorded to muscle stretch at rates of 2.5-45 mm/s and amplitudes of 2-10 mm. Spindle afferents could be classified as primary or secondary on the basis of two criteria. The first criterion was conduction velocity. The conduction velocity histogram was bimodal, with peaks at about 45 and 80 m/s and an intermediate region from 55 to 70 m/s. The second criterion was the pattern of adaptation following the peak of ramp stretch. This latter criterion has the advantage of allowing units with intermediate conduction velocities also to be confidently classified as primary or secondary. The velocity and position sensitivities of primate spindle afferents were determined. The mean dynamic index and mean dynamic sensitivity of secondary afferents were about 45% of the corresponding values for primary afferents. On the other hand, the position sensitivities of primary and secondary spindle afferents in the baboon were not significantly different.


1993 ◽  
Vol 69 (2) ◽  
pp. 642-645 ◽  
Author(s):  
Y. Zhang ◽  
A. M. Partsalis ◽  
S. M. Highstein

1. Properties of superior vestibular nucleus (SVN) neurons and their projection to the cerebellar flocculus were studied in alert squirrel monkeys by using chronic unit and eye movement recording and microstimulation techniques. Twenty-three cells were antidromically activated from the ipsilateral flocculus, and seventeen of these were also orthodromically activated from the ipsilateral VIIth nerve at monosynaptic latencies. Only 1 of these 23 units was also inhibited by flocculus stimulation. According to their response properties, 9 of the cells were pure vestibular, 2 were vestibular-pause, and 12 were position-vestibular cells. The mean eye position sensitivity of these position-vestibular cells was significantly lower than that of cells projecting to the oculomotor nucleus (OMN). No eye movement-only neurons were antidromically activated from the flocculus. No cells could be antidromically activated from both the oculomotor nucleus and the flocculus.


2003 ◽  
Vol 17 (2) ◽  
pp. 126-131 ◽  
Author(s):  
Belmiro Cavalcanti do Egito Vasconcelos ◽  
Cosme Gay Escoda ◽  
Ricardo José de Holanda Vasconcellos ◽  
Riedel Frota Sá Nogueira Neves

The aim of this study was to evaluate standardized conduction velocity data for uninjured facial nerve and facial nerve repaired with autologous graft nerves and synthetic materials. An evaluation was made measuring the preoperative differences in the facial nerve conduction velocities on either side, and ascertaining the existence of a positive correlation between facial nerve conduction velocity and the number of axons regenerated postoperatively. In 17 rabbits, bilateral facial nerve motor action potentials were recorded pre- and postoperatively. The stimulation surface electrodes were placed on the auricular pavilion (facial nerve trunk) and the recording surface electrodes were placed on the quadratus labii inferior muscle. The facial nerves were isolated, transected and separated 10 mm apart. The gap between the two nerve ends was repaired with autologous nerve grafts and PTFE-e (polytetrafluoroethylene) or collagen tubes. The mean of maximal conduction velocity of the facial nerve was 41.10 m/s. After 15 days no nerve conduction was evoked in the evaluated group. For the period of 2 and 4 months the mean conduction velocity was approximately 50% of the normal value in the subgroups assessed. A significant correlation was observed between the conduction velocity and the number of regenerated axons. Noninvasive functional evaluation with surface electrodes can be useful for stimulating and recording muscle action potentials and for assessing the functional state of the facial nerve.


1987 ◽  
Vol 58 (4) ◽  
pp. 719-738 ◽  
Author(s):  
S. M. Highstein ◽  
J. M. Goldberg ◽  
A. K. Moschovakis ◽  
C. Fernandez

1. Intracellular recordings were made from secondary neurons in the vestibular nuclei of barbiturate-anesthetized squirrel monkeys. Monosynaptic excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the ipsilateral vestibular nerve (Vi) were measured. An electrophysiological paradigm, described in the preceding paper (26), was used to determine the proportion of irregularly (I) and regularly (R) discharging Vi afferents making direct connections with individual secondary neurons. The results were expressed as a % I index, an estimate for each neuron of the percentage of the total Vi monosynaptic input that was derived from I afferents. The secondary neurons were also classified as I, R, or M cells, depending on whether they received their direct Vi inputs predominantly from I or R afferents or else from a mixture (M) of both kinds of Vi fibers. The neurons were located in the superior vestibular nucleus (SVN) or in the rostral parts of the medical or lateral (LVN) vestibular nuclei. 2. Antidromic activation or reconstruction of axonal trajectories after intrasomatic injection of horseradish peroxidase (HRP) was used to identify three classes of secondary neurons in terms of their output pathways: 1) cerebellar-projecting (Fl) cells innervating the flocculus (n = 26); 2) rostrally projecting (Oc) cells whose axons ascended toward the oculomotor (IIIrd) nucleus (n = 27); and 3) caudally projecting (Sp) cells with axons descending toward the spinal cord (n = 13). Two additional neurons, out of 21 tested, could be antidromically activated both from the level of the IIIrd nucleus and from the spinal cord. 3. The Vi inputs to the various classes of relay neurons differed. As a class, Oc neurons received the most regular inputs. Sp neurons had more irregular inputs. Fl neurons were heterogeneous with similar numbers of R, M, and I neurons. The mean values (+/- SD) of the % I index for the Oc, Fl, and Sp neurons were 34.7 +/- 24.7, 51.9 +/- 30.4, and 61.8 +/- 18.0%, respectively. Only the Oc neurons had a % I index that was similar to the proportion of I afferents (34%) in the vestibular nerve (cf. Ref. 26). 4. The commissural inputs from the contralateral vestibular nerve (Vc) also differed for the three projection classes. Commissural inhibition was most common in Fl cells: 22/25 (88%) of the neurons had Vc inhibitory postsynaptic potentials (IPSPs) and 1/25 (4%) had a Vc EPSP. In contrast, Vc inputs were only observed in approximately half the Oc and Sp neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1991 ◽  
Vol 65 (1) ◽  
pp. 76-86 ◽  
Author(s):  
T. R. Scott ◽  
C. R. Plata-Salaman ◽  
V. L. Smith ◽  
B. K. Giza

1. We analyzed the activity of single neurons in gustatory cortex of alert cynomolgus monkeys in response to a range of stimulus intensities. Chemicals were deionized water, fruit juice, and several concentrations of the four prototypical taste stimuli: 10(-3)-1.0 M glucose, 10(-3)-1.0 M NaCl, 10(-4)-3 x 10(-2) M HCl, and 10(-5)-3 x 10(-3) M quinine HCl. 2. Taste-evoked responses could be recorded from a cortical gustatory area that measured 2.5 mm in its anteroposterior extent, 6.0 mm dorsoventrally, and 3.0 mm mediolaterally. Taste-responsive cells constituted 62 (3.7%) of the 1,661 neurons tested. Nongustatory cells gave responses associated with mouth movement (10.1%), somatosensory stimulation (2.2%), and approach or anticipation (0.9%). 3. Intensity-response functions were determined across 62 gustatory neurons. Neural thresholds for each stimulus quality conformed well to human psychophysical thresholds. Mean discharge rate was a direct function of stimulus concentration for glucose, NaCl, and quinine HCl. The most effective of the basic stimuli was glucose. 4. Power function exponents were calculated from the responses of neural subgroups most responsive to each basic stimulus. Those for glucose, NaCl, and quinine were within the range of psychophysically derived values. Thus the perceived intensity of each basic quality is presumably based on the activity of the appropriate neural subgroup rather than on the mean activity of all taste cells. 5. The mean breadth-of-tuning (entropy) coefficient for 62 gustatory neurons was 0.65 (range, 0.00–0.98). 6. There was no clear evidence of chemotopic organization in the gustatory cortex. 7. An analysis of taste quality indicated that sweet stimuli evoked patterns of activity that were clearly distinct from those of the nonsweet chemicals. Among the latter group, NaCl was differentiable from HCl and quinine HCl, whose patterns were closely related. 8. The response characteristics of cortical taste cells imply gustatory thresholds and intensity-response functions for the nonhuman primate that conform well to those reported in psychophysical studies of humans, reinforcing the value of this neural model for human taste intensity perception.


Sign in / Sign up

Export Citation Format

Share Document