Discrimination of post- and presynaptic GABAB receptor-mediated responses by tetrahydroaminoacridine in area CA3 of the rat hippocampus

1993 ◽  
Vol 69 (2) ◽  
pp. 630-635 ◽  
Author(s):  
N. A. Lambert ◽  
W. A. Wilson

1. The effects of the K+ channel blocker 9-amino-1,2,3,4-tetrahydroacridine (THA) on the actions of baclofen and gamma-aminobutyric acid (GABA) at post- and presynaptic GABAB receptors were studied with whole-cell voltage-clamp recording in area CA3 of rat hippocampal slices. 2. The effect of THA on postsynaptic GABAB receptor-mediated responses was studied in neurons perfused internally with potassium gluconate and guanosine triphosphate (GTP). At a holding potential of -70 mV, the GABAB receptor agonist (+/-)-baclofen (30 microM) induced an outward current and increased membrane conductance. In the presence of the excitatory amino acid receptor antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and (+/-)-2-amino-5-phosphonovalerate (APV), stimulation in stratum pyramidale or proximal stratum radiatum evoked GABAA receptor-mediated, fast monosynaptic inhibitory postsynaptic currents (IPSCs) and GABAB receptor-mediated, late monosynaptic IPSCs. THA (0.3 mM) blocked the baclofen-induced current and conductance increase and GABAB receptor-mediated IPSCs. 3. The effect of THA on presynaptic GABAB receptor-mediated responses was studied in neurons perfused internally with Cs+ and lidocaine N-ethyl bromide (QX-314), which blocked post-synaptic GABAB receptor-mediated responses. Stimulation in the presence of DNQX and APV evoked GABAA receptor-mediated IPSCs; when pairs of stimuli were delivered 200 ms apart the second IPSC was depressed. Baclofen reversibly depressed IPSCs, and partially occluded paired-pulse depression of IPSCs. The GABAB receptor antagonist CGP 35348 (0.5-1.0 mM) reversed baclofen-induced depression of IPSCs and partially blocked paired-pulse depression. Baclofen-induced and paired-pulse depression of IPSCs were not by affected by THA (0.3 mM). 4. Baclofen reversibly decreased the amplitude and frequency of spontaneous monosynaptic IPSCs (sIPSCs). Depression of sIPSCs by baclofen was unchanged by THA. 5. These results indicate that THA blocks the actions of baclofen and GABA at post- but not presynaptic GABAB receptors. We conclude that post- and presynaptic GABAB receptors in area CA3 of the rat hippocampus couple to different effector mechanisms; postsynaptic GABAB receptors activate THA-sensitive K+ channels, and presynaptic GABAB receptors decrease neurotransmitter release through a THA-insensitive mechanism.

1998 ◽  
Vol 79 (3) ◽  
pp. 1341-1348 ◽  
Author(s):  
Olivier Caillard ◽  
Heather A. McLean ◽  
Yehezkel Ben-Ari ◽  
Jean-Luc Gaïarsa

Caillard, Olivier, Heather A. McLean, Yehezkel Ben-Ari, and Jean-Luc Gaı̈arsa. Ontogenesis of presynaptic GABAB receptor-mediated inhibition in the CA3 region of the rat hippocampus. J. Neurophysiol. 79: 1341–1348, 1998. γ-Aminobutyric acid-B(GABAB) receptor-dependent and -independent components of paired-pulse depression (PPD) were investigated in the rat CA3 hippocampal region. Intracellular and whole cell recordings of CA3 pyramidal neurons were performed on hippocampal slices obtained from neonatal (5–7 day old) and adult (27–34 day old) rats. Electrical stimulation in the hilus evoked monosynaptic GABAA postsynaptic currents (eIPSCs) isolated in the presence of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM) and d(−)2-amino-5-phosphovaleric acid (d-AP5, 50 μM) with 2(triethylamino)- N-(2,6-dimethylphenyl) acetamine (QX314) filled electrodes. In adult CA3 pyramidal neurons, when a pair of identical stimuli was applied at interstimulus intervals (ISIs) ranging from 50 to 1,500 ms the amplitude of the second eIPSC was depressed when compared with the first eIPSC. This paired-pulse depression (PPD) was partially blockedb y  P - 3 - a m i n o p r o p y l - P - d i e t h o x y m e t h y l  p h o s p h o r i c  a c i d(CGP35348, 0.5 mM), a selective GABAB receptor antagonist. In neonates, PPD was restricted to ISIs shorter than 200 ms and was not affected by CGP35348. The GABAB receptor agonist baclofen reduced the amplitude of eIPSCs in a dose-dependent manner with the same efficiency in both adults and neonates. Increasing the probability of transmitter release with high Ca2+ (4 mM)/low Mg2+ (0.3 mM) external solution revealed PPD in neonatal CA3 pyramidal neurons that was 1) partially prevented by CGP35348, 2) independent of the membrane holding potential of the recorded cell, and 3) not resulting from a change in the reversal potential of GABAA eIPSCs. In adults the GABA uptake blocker tiagabine (20 μM) increased the duration of eIPSCs and the magnitude of GABAB receptor-dependent PPD. In neonates, tiagabine also increased duration of eIPSCs but to a lesser extent than in adult and did not reveal a GABAB receptor-dependent PPD. These results demonstrate that although GABAB receptor-dependent and -independent mechanisms of presynaptic inhibition are present onGABAergic terminals and functional, they do not operate at the level of monosynaptic GABAergic synaptic transmission at early stages of development. Absence of presynaptic autoinhibition of GABA release seems to be due to the small amount of transmitter that can access presynaptic regulatory sites.


1995 ◽  
Vol 74 (5) ◽  
pp. 2126-2137 ◽  
Author(s):  
R. Khazipov ◽  
P. Congar ◽  
Y. Ben-Ari

1. Whole cell patch-clamp recordings were employed to characterize monosynaptic inhibitory postsynaptic currents (IPSCs) in morphologically and electrophysiologically identified interneurons located in the stratum lacunosum moleculare, or near the border of the stratum radiatum (LM interneurons), in the CA1 region of hippocampal slices taken from 3- to 4-wk-old rats. Monosynaptic IPSCs, evoked in the presence of glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM) and D-2-amino-5-phosphopentanoate (APV; 50 microM) were biphasic. The gamma-aminobutyric acid-A (GABAA) receptor antagonist, bicuculline (20 microM), blocked the fast IPSC, and the slow IPSC was blocked by the GABAB receptor antagonist CGP35348 (500 microM). 2. Monosynaptic IPSCs were evoked by electrical stimulation in several distant regions including the stratum radiatum, the stratum oriens, the stratum lacunosum-moleculare, and the molecular layer of dentate gyrus, suggesting an extensive network of inhibitory interneurons in the hippocampus. In paired recordings of CA1 interneurons and pyramidal cells, IPSCs were evoked by electrical stimulation of most of these distal regions with the exception of the molecular layer of dentate gyrus, which evoked an IPSC only in LM interneurons. 3. Frequent (> 0.1 Hz) stimulation depressed the evoked IPSCs. With a paired-pulse protocol, the second IPSC was depressed and the maximal depression (40-50%) was observed with an interstimulus interval of 100-200 ms. 4. The GABAB receptor agonist baclofen (1 microM) reduced the amplitude of evoked IPSCs and the paired-pulse depression of the second IPSC. The GABAB receptor antagonist CGP35348 (0.5-1 mM) had no significant effect on the amplitude of isolated IPSCs. However, CGP35348 reduced but did not fully block paired-pulse depression, suggesting that this depression is partly due to the activation of presynaptic GABAB receptors. 5. The paired-pulse depression depended on the level of transmitter release. Potentiation of synaptic release of GABA, by increasing the extracellular Ca2+ concentration to 4 mM and reducing the extracellular Mg2+ concentration to 0.1 mM, enhanced the depression. Reduction of transmitter release by increasing extracellular Mg2+ concentration to 7 mM diminished the paired-pulse depression of IPSCs. After potentiation of transmitter release, CGP35348 was less efficient in reducing the paired-pulse depression, suggesting that enhancement of depression by high-calcium/low-magnesium medium was preferentially due to the potentiation of a GABAB-independent component. 6. In summary, monosynaptic IPSCs recorded in LM interneurons show similar features to those recorded in pyramidal cells. The strong correlation between the level of transmitter release and the degree of paired-pulse depression may have important physiological consequences, because in synapses with a high level of activity and a high level of GABA release, inhibition is powerful, but depression can develop more readily.


1994 ◽  
Vol 72 (6) ◽  
pp. 2911-2926 ◽  
Author(s):  
A. Roepstorff ◽  
J. D. Lambert

1. Monosynaptic gamma-aminobutyric acid-A (GABAA)-mediated inhibitory postsynaptic currents (IPSCs) were evoked in CA1 pyramidal neurons in the hippocampal slice preparation by direct stimulation of the interneurons in the presence of glutamatergic blockers and intracellular QX-314 to block GABAB-mediated postsynaptic inhibition. 2. Paired-pulse stimulation was used to activate presynaptic GABAB autoreceptors and thereby reduce the amount of transmitter release. This caused paired-pulse depression, persisting for > 3 s, and maximal at interpulse intervals between 100 and 250 ms where peak current (Ipeak) was decreased by 29.7% and decay time (t1/2) was decreased by 44.7%. There was clear correlation between changes in Ipeak and t1/2 at all interpulse intervals. 3. With paired-pulse stimulation, the decay of the second IPSC in most cells (12/18) could be resolved into two components, Ifast and Islow, each decaying monoexponentially with tau fast = 14.10 ms and tau slow = 58.87 ms. The faster decay during paired-pulse depression was predominantly caused by a larger Ifast fraction, which accounted for 27.5% of Ipeak in a single control IPSC and 79.3% at an interpulse interval of 250 ms. 4. Reducing the probability for transmitter release at all active sites by reducing [Ca2+]o from 2 mM to 1 mM decreased Ipeak by 49.7%, reduced paired-pulse depression, and partly mimicked the changes in decay kinetics seen after activation of presynaptic GABAB receptors. Lowering the stimulating intensity to 10% of the maximal value decreased Ipeak by 73.8%, but hardly affected the decay of the IPSC and the paired-pulse depression. 5. Application of the selective blocker of GABA uptake, tiagabine (20-50 microM), increased t1/2 of a single IPSC by 114% without affecting Ipeak. The increase was caused solely by an increase in tau slow of 141%. On the other hand, the benzodiazepine agonist midazolam (2 microM), selectively increased tau fast. It therefore is suggested that tau fast reflects the kinetics of the GABAA receptor/ionophore complex and tau slow the efficiency of the GABA uptake system. 6. The findings show that GABA activates postsynaptic receptors throughout the tail of a single IPSC. This could be caused by reactivation of synaptic receptors or activation of extrasynaptic receptors. The decay therefore is limited mainly by the efficiency of the uptake system. An IPSC that is maximally depressed by paired-pulse stimulation is mediated primarily by a single activation of synaptic receptors, and the decay is limited mainly by the kinetics of the GABAA receptor/ionophore complex.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 74 (2) ◽  
pp. 506-518 ◽  
Author(s):  
L. D. Matzel ◽  
I. A. Muzzio ◽  
R. F. Rogers

1. gamma-Aminobuturic acid-B (GABAB) receptors play a role in the mediation of slow inhibitory postsynaptic potentials in mammalian as well as some nonmammalian species. In identified photoreceptors from the marine mollusc Hermissenda, recent evidence has suggested that GABA, as well as the GABAB receptor agonist baclofen, might simultaneously modulate multiple conductances on the postsynaptic membrane. Here, using intracellular current-clamp and single-electrode voltage-clamp techniques, we have characterized responses to baclofen in the B photoreceptors of the Hermissenda eye. 2. Microapplication of baclofen (12.5–62.5 microM) to the terminal branches of the B photoreceptors induced a slow, concentration-dependent hyperpolarization (approximately 3–8 mV) that was accompanied by a cessation of spontaneous action potentials and a positive shift in firing threshold. Both the hyperpolarization and the shift in spike threshold in response to baclofen were attenuated largely by the K+ channel blocker tetraethylammonium chloride (TEA; 50 mM). 3. Bath application of baclofen (100 microM) decreased the amplitude, duration, and the afterhyperpolarization (AHP) of evoked action potentials. Although baclofen's effect on spike duration and amplitude persisted in the absence of extracellular Ca2+, the reduction of the AHP by baclofen was eliminated, suggesting that multiple conductances mediated the baclofen-induced modification of the action potential. 4. Using a single-electrode voltage-clamp technique, microapplication of baclofen to the terminal branches of the B photoreceptor produced a slow, net outward current (< 0.5 nA) that reversed near the equilibrium potential for K+ and shifted to more positive potentials when extracellular K+ was increased, in approximate agreement with the Nernst equation for K+. 5. Baclofen induced an increase in amplitude of the nonvoltage dependent leak conductance (IL), and the increase was blocked by TEA. The baclofen-induced increase of IL was accompanied by an increase in amplitude and a negative shift in the voltage dependence of a slow, steeply voltage-dependent K+ current (IK), which displays selective sensitivity to TEA but does not normally contribute to leak conductance. The amplitude and steady-state inactivation of a fast, transient K+ current, as well as the amplitude of an inwardly rectifying K+ current were unaffected by baclofen. 6. Both the rate of activation as well as the amplitude of a voltage-dependent Ca2+ current (ICa) were reduced by baclofen. The reduction of ICa resulted in a concomitant suppression of a Ca(2+)-dependent K+ current (IK-Ca) that was sufficient to account for the reduction of the AHP after evoked action potentials.(ABSTRACT TRUNCATED AT 400 WORDS)


2007 ◽  
Vol 25 (3) ◽  
pp. 631-641 ◽  
Author(s):  
D. Merlo ◽  
C. Mollinari ◽  
Y. Inaba ◽  
A. Cardinale ◽  
A.M. Rinaldi ◽  
...  

2002 ◽  
Vol 544 (2) ◽  
pp. 469-476 ◽  
Author(s):  
Chiara Saviane ◽  
Leonid P. Savtchenko ◽  
Giacomo Raffaelli ◽  
Leon L. Voronin ◽  
Enrico Cherubini

2003 ◽  
Vol 89 (1) ◽  
pp. 186-198 ◽  
Author(s):  
Fu-Chun Hsu ◽  
Sheryl S. Smith

Withdrawal from the endogenous steroid progesterone (P) after chronic administration increases anxiety and seizure susceptibility via declining levels of its potent GABA-modulatory metabolite 3α-OH-5α-pregnan-20-one (3α,5αTHP). This 3α,5α-THP withdrawal also results in a decreased decay time constant for GABA-gated current assessed using whole cell patch-clamp techniques on pyramidal cells acutely dissociated from CA1 hippocampus. The purpose of this study was to test the hypothesis that the decreases in total integrated GABA-gated current observed at the level of the isolated pyramidal cell would be manifested as a reduced GABA inhibition at the circuit level following hormone withdrawal. Toward this end, adult, female rats were administered P via subcutaneous capsule for 3 wk using a multiple withdrawal paradigm. We then evaluated paired-pulse inhibition (PPI) of pyramidal neurons in CA1 hippocampus using extracellular recording techniques in hippocampal slices from rats 24 h after removal of the capsule (P withdrawal, P Wd). The population spike (PS) was recorded at the stratum pyramidale following homosynaptic orthodromic stimulation in the nearby stratum radiatum. The threshold for eliciting a response was decreased after P Wd, and the mean PS amplitude was significantly increased compared with control values at this time. Paired pulses with 10-ms inter-pulse intervals were then applied across an intensity range from 2 to 20 times threshold. Evaluation of paired-pulse responses showed a significant 40–50% reduction in PPI for PS recorded in the hippocampal CA1 region after P Wd, suggesting an increase in circuit excitability. At this time, enhancement of PPI by the benzodiazepine lorazepam (LZM; 10 μM) was prevented, while pentobarbital (10 μM) potentiation of PPI was comparable to control levels of response. These data are consistent with upregulation of the α4 subunit of the GABAA receptor (GABAR) as we have previously shown. Moreover, the reduced PPI caused by P Wd was prevented by suppression of GABAR α4-subunit expression following intraventricular administration of specific antisense oligonucleotides (1 μg/h for 72 h). These results demonstrating a reduction in PPI following P Wd suggest that GABAergic-mediated recurrent or feed-forward inhibition occurring at the circuit level were decreased following P Wd in female rats, an effect at least partially attributable to alterations in the GABAR subunit gene expression.


2020 ◽  
Vol 21 (9) ◽  
pp. 3184
Author(s):  
Hana Kubová ◽  
Zdeňka Bendová ◽  
Simona Moravcová ◽  
Dominika Pačesová ◽  
Luisa Rocha ◽  
...  

Benzodiazepines (BZDs) are widely used in patients of all ages. Unlike adults, neonatal animals treated with BZDs exhibit a variety of behavioral deficits later in life; however, the mechanisms underlying these deficits are poorly understood. This study aims to examine whether administration of clonazepam (CZP; 1 mg/kg/day) in 7–11-day-old rats affects Gama aminobutyric acid (GABA)ergic receptors in both the short and long terms. Using RT-PCR and quantitative autoradiography, we examined the expression of the selected GABAA receptor subunits (α1, α2, α4, γ2, and δ) and the GABAB B2 subunit, and GABAA, benzodiazepine, and GABAB receptor binding 48 h, 1 week, and 2 months after treatment discontinuation. Within one week after CZP cessation, the expression of the α2 subunit was upregulated, whereas that of the δ subunit was downregulated in both the hippocampus and cortex. In the hippocampus, the α4 subunit was downregulated after the 2-month interval. Changes in receptor binding were highly dependent on the receptor type, the interval after treatment cessation, and the brain structure. GABAA receptor binding was increased in almost all of the brain structures after the 48-h interval. BZD-binding was decreased in many brain structures involved in the neuronal networks associated with emotional behavior, anxiety, and cognitive functions after the 2-month interval. Binding of the GABAB receptors changed depending on the interval and brain structure. Overall, the described changes may affect both synaptic development and functioning and may potentially cause behavioral impairment.


Sign in / Sign up

Export Citation Format

Share Document