scholarly journals Progesterone Withdrawal Reduces Paired-Pulse Inhibition in Rat Hippocampus: Dependence on GABAA Receptor α4 Subunit Upregulation

2003 ◽  
Vol 89 (1) ◽  
pp. 186-198 ◽  
Author(s):  
Fu-Chun Hsu ◽  
Sheryl S. Smith

Withdrawal from the endogenous steroid progesterone (P) after chronic administration increases anxiety and seizure susceptibility via declining levels of its potent GABA-modulatory metabolite 3α-OH-5α-pregnan-20-one (3α,5αTHP). This 3α,5α-THP withdrawal also results in a decreased decay time constant for GABA-gated current assessed using whole cell patch-clamp techniques on pyramidal cells acutely dissociated from CA1 hippocampus. The purpose of this study was to test the hypothesis that the decreases in total integrated GABA-gated current observed at the level of the isolated pyramidal cell would be manifested as a reduced GABA inhibition at the circuit level following hormone withdrawal. Toward this end, adult, female rats were administered P via subcutaneous capsule for 3 wk using a multiple withdrawal paradigm. We then evaluated paired-pulse inhibition (PPI) of pyramidal neurons in CA1 hippocampus using extracellular recording techniques in hippocampal slices from rats 24 h after removal of the capsule (P withdrawal, P Wd). The population spike (PS) was recorded at the stratum pyramidale following homosynaptic orthodromic stimulation in the nearby stratum radiatum. The threshold for eliciting a response was decreased after P Wd, and the mean PS amplitude was significantly increased compared with control values at this time. Paired pulses with 10-ms inter-pulse intervals were then applied across an intensity range from 2 to 20 times threshold. Evaluation of paired-pulse responses showed a significant 40–50% reduction in PPI for PS recorded in the hippocampal CA1 region after P Wd, suggesting an increase in circuit excitability. At this time, enhancement of PPI by the benzodiazepine lorazepam (LZM; 10 μM) was prevented, while pentobarbital (10 μM) potentiation of PPI was comparable to control levels of response. These data are consistent with upregulation of the α4 subunit of the GABAA receptor (GABAR) as we have previously shown. Moreover, the reduced PPI caused by P Wd was prevented by suppression of GABAR α4-subunit expression following intraventricular administration of specific antisense oligonucleotides (1 μg/h for 72 h). These results demonstrating a reduction in PPI following P Wd suggest that GABAergic-mediated recurrent or feed-forward inhibition occurring at the circuit level were decreased following P Wd in female rats, an effect at least partially attributable to alterations in the GABAR subunit gene expression.

1995 ◽  
Vol 73 (1) ◽  
pp. 421-426 ◽  
Author(s):  
P. Congar ◽  
R. Khazipov ◽  
Y. Ben-Ari

1. We studied the effects of anoxia on excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) evoked by electrical stimulation in the stratum radiatum in concomitantly recorded pyramidal cells and interneurons of the CA1 region of rat hippocampal slices. We used the blind whole cell patch-clamp technique, and anoxia was induced by switching perfusion of the slice from oxygenated artificial cerebral spinal fluid (ACSF) to ACSF saturated with 95% N2-5% CO2 for 4-6 min. 2. As in pyramidal neurons, anoxia induced in interneurons outward currents, during and shortly after the anoxic episode. Both currents were, however, significantly larger in interneurons than in pyramidal neurons. 3. EPSCs are more rapidly depressed by anoxia in interneurons than in simultaneously recorded pyramidal cells. 4. In pyramidal neurons, polysynaptic IPSCs (pIPSCs) evoked by conventional distant stimulation (> 1 mm) are more sensitive to anoxia then EPSCs. In contrast, in interneurons, anoxia blocks with a similar latency EPSCs and polysynaptic IPSCs. 5. To determine whether this block of pIPSCs in pyramidal cells is due to a shift in driving force or a change in conductance, we examined the current (I/V) relationships. The block by anoxia of pIPSCs is due to a reduction of IPSC conductance (> 98%) that occlude other events including the shift of IPSCs reversal potential (ECl).(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 66 (6) ◽  
pp. 814-819 ◽  
Author(s):  
Patrick P.-H. Leung ◽  
James J. Miller

Norepinephrine (NE) has been shown to produce either an inhibitory or an excitatory influence on CA1 pyramidal neurons of the hippocampus depending on the dosage. It was suggested that NE, in addition to exerting a direct inhibitory effect on pyramidal cells, may also act upon recurrent inhibitory interneurons to produce a disinhibition of the pyramidal cells. The present study was undertaken to examine the effect of NE on alveus-evoked inhibition, presumably mediated by the basket cell interneurons innervating the pyramidal cells. Experiments were carried out on the in vitro hippocampal slice preparation and inhibition was assessed by the percent reduction of the stratum radiatum evoked population spike response when preceded by a conditioning pulse delivered to the alveus to activate the inhibitory interneurons via the recurrent collaterals of the pyramidal cells. Paired pulse stimulation resulted in inhibition of the stratum radiatum evoked test response with conditioning-test intervals up to 60 ms. NE (50 μM) perfusion resulted in a significant and reversible reduction of the alveus-evoked recurrent inhibition. Intracellular recordings using a similar paired pulse paradigm corroborated the extracellular data well. The possible roles of NE in the physiological functioning and pathophysiology of epileptiform activity of the hippocampus are discussed.


2014 ◽  
Vol 112 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Hayley A. Mattison ◽  
Ashish A. Bagal ◽  
Michael Mohammadi ◽  
Nisha S. Pulimood ◽  
Christian G. Reich ◽  
...  

GluA2-lacking, calcium-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) have unique properties, but their presence at excitatory synapses in pyramidal cells is controversial. We have tested certain predictions of the model that such receptors are present in CA1 cells and show here that the polyamine spermine, but not philanthotoxin, causes use-dependent inhibition of synaptically evoked excitatory responses in stratum radiatum, but not s. oriens, in cultured and acute hippocampal slices. Stimulation of single dendritic spines by photolytic release of caged glutamate induced an N-methyl-d-aspartate receptor-independent, use- and spermine-sensitive calcium influx only at apical spines in cultured slices. Bath application of glutamate also triggered a spermine-sensitive influx of cobalt into CA1 cell dendrites in s. radiatum. Responses of single apical, but not basal, spines to photostimulation displayed prominent paired-pulse facilitation (PPF) consistent with use-dependent relief of cytoplasmic polyamine block. Responses at apical dendrites were diminished, and PPF was increased, by spermine. Intracellular application of pep2m, which inhibits recycling of GluA2-containing AMPARs, reduced apical spine responses and increased PPF. We conclude that some calcium-permeable, polyamine-sensitive AMPARs, perhaps lacking GluA2 subunits, are present at synapses on apical dendrites of CA1 pyramidal cells, which may allow distinct forms of synaptic plasticity and computation at different sets of excitatory inputs.


2001 ◽  
Vol 94 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Koichi Nishikawa ◽  
M. Bruce MacIver

Background A relatively small number of inhibitory interneurons can control the excitability and synchronization of large numbers of pyramidal cells in hippocampus and other cortical regions. Thus, anesthetic modulation of interneurons could play an important role for the maintenance of anesthesia. The aim of this study was to compare effects produced by volatile anesthetics on inhibitory postsynaptic currents (IPSCs) of rat hippocampal interneurons. Methods Pharmacologically isolated gamma-aminobutyric acid type A (GABAA) receptor-mediated IPSCs were recorded with whole cell patch-clamp techniques in visually identified interneurons of rat hippocampal slices. Neurons located in the stratum radiatum-lacunosum moleculare of the CA1 region were studied. The effects of clinically relevant concentrations (1.0 rat minimum alveolar concentration) of halothane, enflurane, isoflurane, and sevoflurane were compared on kinetics of both stimulus-evoked and spontaneous GABAA receptor-mediated IPSCs in interneurons. Results Halothane (1.2 vol% approximately 0.35 mm), enflurane (2.2 vol% approximately 0.60 mm), isoflurane (1.4 vol% approximately 0.50 mm), and sevoflurane (2.7 vol% approximately 0.40 mm) preferentially depressed evoked IPSC amplitudes to 79.8 +/- 9.3% of control (n = 5), 38.2 +/- 8.6% (n = 6), 52.4 +/- 8.4% (n = 5), and 46.1 +/- 16.0% (n = 8), respectively. In addition, all anesthetics differentially prolonged the decay time constant of evoked IPSCs to 290.1 +/- 33.2% of control, 423.6 +/- 47.1, 277.0 +/- 32.2, and 529 +/- 48.5%, respectively. The frequencies of spontaneous IPSCs were increased by all anesthetics (twofold to threefold). Thus, the total negative charge transfer mediated by GABAA receptors between synaptically connected interneurons was enhanced by all anesthetics. Conclusions Volatile anesthetics differentially enhanced GABAA receptor-mediated synaptic inhibition in rat hippocampal interneurons, suggesting that hippocampal interneuron circuits are depressed by these anesthetics in an agent-specific manner.


1993 ◽  
Vol 70 (6) ◽  
pp. 2251-2259 ◽  
Author(s):  
R. Khazipov ◽  
P. Bregestovski ◽  
Y. Ben-Ari

1. The effects of anoxia on inhibitory synaptic transmission were studied in hippocampal slices of 3- to 4-wk-old rats. CA1 pyramidal cells were examined by whole-cell patch-clamp recording. Synaptic currents were evoked by “distant” (> 0.5 mm) or “close” (< 0.5 mm) electrical stimulation in the stratum radiatum. 2. The excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs) evoked by distant stimulation were completely suppressed by brief anoxia (95% N2-5% CO2 for 4-6 min) and recovered upon reoxygenation. IPSCs were more sensitive to anoxia than EPSCs. EPSCs and IPSCs evoked by distant stimulation were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM) and D-2-amino-5-phosphonopentanoate (APV; 50 microM). This indicates that IPSCs were mediated via a polysynaptic pathway that involves glutamate receptors. 3. Synaptic currents evoked by close stimulation were only partly inhibited by anoxia. The bicuculline-sensitive gamma-aminobutyric acid-A (GABAA) receptor-mediated synaptic currents were particularly resistant to anoxia, suggesting that the GABAergic input to pyramidal neurons is not inhibited by anoxia. 4. At close stimulation in the stratum radiatum, monosynaptic IPSCs could be evoked in the presence of CNQX (20 microM) and APV (50 microM). The monosynaptic IPSCs had early bicuculline (15 microM) and late CGP 35348 (100 microM)-sensitive components confirming an involvement of GABAA and GABAB receptors (IPSCA and IPSCB components), respectively. 5. The monosynaptic IPSCA component evoked by close stimulation was not changed significantly during and after brief anoxia. Responses to pressure application of isoguvacine (GABAA agonist) were also not affected by anoxia.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 77 (4) ◽  
pp. 2213-2218 ◽  
Author(s):  
Tomi Taira ◽  
Karri Lamsa ◽  
Kai Kaila

Taira, Tomi, Karri Lamsa, and Kai Kaila. Posttetanic excitation mediated by GABAA receptors in rat CA1 pyramidal neurons. J.Neurophysiol. 77: 2213–2218, 1997. The contributions of γ-aminobutyric acid (GABA) receptors to posttetanic excitation of CA1 pyramidal neurons in rat hippocampal slices were studied using extracellular and intracellular recording techniques. Synaptic responses were evoked on tetanic stimulation (100–200 Hz, 40–100 pulses) applied in stratum radiatum close (300–600 μm) to the recording site. Under control conditions, tetanic stimulation resulted in a triphasic depolarization/hyperpolarization/sustained depolarization sequence in area CA1 pyramidal cells. The late depolarization usually gave rise to a prolonged (≤3 s) spike firing. The late depolarization and the associated spike firing were blocked both specifically and completely (within a time window of 3–6 min starting from picrotoxin application) by the GABAA receptor antagonist picrotoxin (PiTX, 100 μM). Paradoxically, at this early stage of PiTX application, overall neuronal firing was attenuated to a higher degree than what was achieved by ionotropic glutamate antagonists. Complete block of ionotropic glutamate receptors by the antagonists d-2-amino-5-phosphonopentoate (AP5, 80 μM), 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX, 10 μM), and ketamine (50 μM) blocked the initial fast depolarization and suppressed the late one. Exposure to a permeable inhibitor of carbonic anhydrase, ethoxyzolamide (EZA, 50 μM) inhibited the late, apparently GABA-mediated depolarization. It is concluded that GABA can provide the main posttetanic excitatory drive in the adult hippocampus. The present results suggest that intense activation of GABAergic interneurons may accentuate the excitation of principal neurons and, hence, play an important facilitatory role in the induction of long-term potentiation (LTP) and epileptogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raul Loera-Valencia ◽  
Erika Vazquez-Juarez ◽  
Alberto Muñoz ◽  
Gorka Gerenu ◽  
Marta Gómez-Galán ◽  
...  

AbstractAlterations in brain cholesterol homeostasis in midlife are correlated with a higher risk of developing Alzheimer’s disease (AD). However, global cholesterol-lowering therapies have yielded mixed results when it comes to slowing down or preventing cognitive decline in AD. We used the transgenic mouse model Cyp27Tg, with systemically high levels of 27-hydroxycholesterol (27-OH) to examine long-term potentiation (LTP) in the hippocampal CA1 region, combined with dendritic spine reconstruction of CA1 pyramidal neurons to detect morphological and functional synaptic alterations induced by 27-OH high levels. Our results show that elevated 27-OH levels lead to enhanced LTP in the Schaffer collateral-CA1 synapses. This increase is correlated with abnormally large dendritic spines in the stratum radiatum. Using immunohistochemistry for synaptopodin (actin-binding protein involved in the recruitment of the spine apparatus), we found a significantly higher density of synaptopodin-positive puncta in CA1 in Cyp27Tg mice. We hypothesize that high 27-OH levels alter synaptic potentiation and could lead to dysfunction of fine-tuned processing of information in hippocampal circuits resulting in cognitive impairment. We suggest that these alterations could be detrimental for synaptic function and cognition later in life, representing a potential mechanism by which hypercholesterolemia could lead to alterations in memory function in neurodegenerative diseases.


2002 ◽  
Vol 88 (1) ◽  
pp. 107-116 ◽  
Author(s):  
David R. Ireland ◽  
Wickliffe C. Abraham

Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP3)-activated Ca2+ stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP3-independent transduction pathway.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2477
Author(s):  
Bora Kim ◽  
Tae-Kyeong Lee ◽  
Cheol Woo Park ◽  
Dae Won Kim ◽  
Ji Hyeon Ahn ◽  
...  

Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4–5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.


1998 ◽  
Vol 79 (3) ◽  
pp. 1341-1348 ◽  
Author(s):  
Olivier Caillard ◽  
Heather A. McLean ◽  
Yehezkel Ben-Ari ◽  
Jean-Luc Gaïarsa

Caillard, Olivier, Heather A. McLean, Yehezkel Ben-Ari, and Jean-Luc Gaı̈arsa. Ontogenesis of presynaptic GABAB receptor-mediated inhibition in the CA3 region of the rat hippocampus. J. Neurophysiol. 79: 1341–1348, 1998. γ-Aminobutyric acid-B(GABAB) receptor-dependent and -independent components of paired-pulse depression (PPD) were investigated in the rat CA3 hippocampal region. Intracellular and whole cell recordings of CA3 pyramidal neurons were performed on hippocampal slices obtained from neonatal (5–7 day old) and adult (27–34 day old) rats. Electrical stimulation in the hilus evoked monosynaptic GABAA postsynaptic currents (eIPSCs) isolated in the presence of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM) and d(−)2-amino-5-phosphovaleric acid (d-AP5, 50 μM) with 2(triethylamino)- N-(2,6-dimethylphenyl) acetamine (QX314) filled electrodes. In adult CA3 pyramidal neurons, when a pair of identical stimuli was applied at interstimulus intervals (ISIs) ranging from 50 to 1,500 ms the amplitude of the second eIPSC was depressed when compared with the first eIPSC. This paired-pulse depression (PPD) was partially blockedb y  P - 3 - a m i n o p r o p y l - P - d i e t h o x y m e t h y l  p h o s p h o r i c  a c i d(CGP35348, 0.5 mM), a selective GABAB receptor antagonist. In neonates, PPD was restricted to ISIs shorter than 200 ms and was not affected by CGP35348. The GABAB receptor agonist baclofen reduced the amplitude of eIPSCs in a dose-dependent manner with the same efficiency in both adults and neonates. Increasing the probability of transmitter release with high Ca2+ (4 mM)/low Mg2+ (0.3 mM) external solution revealed PPD in neonatal CA3 pyramidal neurons that was 1) partially prevented by CGP35348, 2) independent of the membrane holding potential of the recorded cell, and 3) not resulting from a change in the reversal potential of GABAA eIPSCs. In adults the GABA uptake blocker tiagabine (20 μM) increased the duration of eIPSCs and the magnitude of GABAB receptor-dependent PPD. In neonates, tiagabine also increased duration of eIPSCs but to a lesser extent than in adult and did not reveal a GABAB receptor-dependent PPD. These results demonstrate that although GABAB receptor-dependent and -independent mechanisms of presynaptic inhibition are present onGABAergic terminals and functional, they do not operate at the level of monosynaptic GABAergic synaptic transmission at early stages of development. Absence of presynaptic autoinhibition of GABA release seems to be due to the small amount of transmitter that can access presynaptic regulatory sites.


Sign in / Sign up

Export Citation Format

Share Document