Activity of medial vestibulospinal tract cells during rotation and ocular movement in the alert squirrel monkey

1993 ◽  
Vol 70 (5) ◽  
pp. 2176-2180 ◽  
Author(s):  
R. Boyle

1. Chronic unit and eye movement recording and microstimulation techniques were used to study the discharge properties of identified medial vestibulospinal tract (MVST) cells in the alert squirrel monkey. MVST cells were antidromically activated from the ventromedial funiculus at C1 and responded to orthodromic stimulation of the ipsilateral VIIIth nerve (Vi) at mono- or disynaptic latencies. Cell discharges were examined during imposed sinusoidal yaw rotation to activate horizontal semicircular canal afferents and during voluntary ocular pursuit and fixation of visual targets with the head held stationary. 2. MVST cells represented 15% (22 of 147 cells) of the population of horizontal canal-related cells recorded in the vestibular nuclei. Twelve MVST cells were monosynaptically related to Vi; of these cells, 7 (58%) were characterized as ipsilateral eye and head velocity, having a discharge modulation related to the velocity of both ipsilaterally directed eye movement and yaw rotation, and 3 also had an ipsilateral eye position sensitivity. Most (8 of 10, 80%) MVST cells disynaptically related to Vi responded only to contralateral head velocity; the other 2 cells carried a combined contralateral head and ipsilateral eye movement signal. A pause or burst of discharge associated with fast or saccadic eye movements made in any direction was not present on the 22 MVST cells. 3. The MVST is an output pathway of the vestibular nuclei through which the labyrinth controls reflex head movements. The results show that MVST cells transmit the movement and position of eyes in orbit, with vestibular signals, to the cervical spinal cord and suggest that the MVST may play a dynamic role in voluntary gaze stabilization and eye/head tracking.

1999 ◽  
Vol 82 (1) ◽  
pp. 436-449 ◽  
Author(s):  
Greg T. Gdowski ◽  
Robert A. McCrea

Single-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20°/s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non–eye-movement ( n = 52) and eye-movement–related ( n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 ± 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement–related units tended to have rotational responses that were correlated with head velocity. On the other hand, non–eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important for controlling postural reflexes and constructing a central percept of body orientation and movement in space.


1984 ◽  
Vol 52 (4) ◽  
pp. 724-742 ◽  
Author(s):  
M. C. Chubb ◽  
A. F. Fuchs ◽  
C. A. Scudder

To elucidate how information is processed in the vestibuloocular reflex (VOR) pathways subserving vertical eye movements, extracellular single-unit recordings were obtained from the vestibular nuclei of alert monkeys trained to track a visual target with their eyes while undergoing sinusoidal pitch oscillations (0.2-1.0 Hz). Units with activity related to vertical vestibular stimulation and/or eye movements were classified as either vestibular units (n = 53), vestibular plus eye-position units (n = 30), pursuit units (n = 10), or miscellaneous units (n = 5), which had various combinations of head- and eye-movement sensitivities. Vestibular units discharged in relation to head rotation, but not to smooth eye movements. On average, these units fired approximately in phase with head velocity; however, a broad range of phase shifts was observed. The activities of 8% of the vestibular units were related to saccades. Vestibular plus eye-position units fired in relation to head velocity and eye position and, in addition, usually to eye velocity. Their discharge rates increased for eye and head movements in opposite directions. During combined head and eye movements, the modulation in unit activity was not significantly different from the sum of the modulations during each alone. For saccades, the unit firing rate either decreased to zero or was unaffected. Pursuit units discharged in relation to eye position, eye velocity, or both, but not to head movements alone. For saccades, unit activity usually either paused or was unaffected. The eye-movement-related activities of the vestibular plus eye-position and pursuit units were not significantly different. A quantitative comparison of their firing patterns suggests that vestibular, vestibular plus eye-position, and pursuit neurons in the vestibular nucleus could provide mossy fiber inputs to the flocculus. In addition, the vertical vestibular plus eye-position neurons have discharge patterns similar to those of fibers recorded rostrally in the medial longitudinal fasciculus. Therefore, our data support the view that vertical vestibular plus eye-position neurons are interneurons of the VOR.


1999 ◽  
Vol 81 (5) ◽  
pp. 2538-2557 ◽  
Author(s):  
Chiju Chen-Huang ◽  
Robert A. McCrea

Effects of viewing distance on the responses of vestibular neurons to combined angular and linear vestibular stimulation. The firing behavior of 59 horizontal canal–related secondary vestibular neurons was studied in alert squirrel monkeys during the combined angular and linear vestibuloocular reflex (CVOR). The CVOR was evoked by positioning the animal’s head 20 cm in front of, or behind, the axis of rotation during whole body rotation (0.7, 1.9, and 4.0 Hz). The effect of viewing distance was studied by having the monkeys fixate small targets that were either near (10 cm) or far (1.3–1.7 m) from the eyes. Most units (50/59) were sensitive to eye movements and were monosynaptically activated after electrical stimulation of the vestibular nerve (51/56 tested). The responses of eye movement–related units were significantly affected by viewing distance. The viewing distance–related change in response gain of many eye-head-velocity and burst-position units was comparable with the change in eye movement gain. On the other hand, position-vestibular-pause units were approximately half as sensitive to changes in viewing distance as were eye movements. The sensitivity of units to the linear vestibuloocular reflex (LVOR) was estimated by subtraction of angular vestibuloocular reflex (AVOR)–related responses recorded with the head in the center of the axis of rotation from CVOR responses. During far target viewing, unit sensitivity to linear translation was small, but during near target viewing the firing rate of many units was strongly modulated. The LVOR responses and viewing distance–related LVOR responses of most units were nearly in phase with linear head velocity. The signals generated by secondary vestibular units during voluntary cancellation of the AVOR and CVOR were comparable. However, unit sensitivity to linear translation and angular rotation were not well correlated either during far or near target viewing. Unit LVOR responses were also not well correlated with their sensitivity to smooth pursuit eye movements or their sensitivity to viewing distance during the AVOR. On the other hand there was a significant correlation between static eye position sensitivity and sensitivity to viewing distance. We conclude that secondary horizontal canal–related vestibuloocular pathways are an important part of the premotor neural substrate that produces the LVOR. The otolith sensory signals that appear on these pathways have been spatially and temporally transformed to match the angular eye movement commands required to stabilize images at different distances. We suggest that this transformation may be performed by the circuits related to temporal integration of the LVOR.


2010 ◽  
Vol 104 (2) ◽  
pp. 811-828 ◽  
Author(s):  
Bernard P. Bechara ◽  
Neeraj J. Gandhi

High-frequency burst neurons in the pons provide the eye velocity command (equivalently, the primary oculomotor drive) to the abducens nucleus for generation of the horizontal component of both head-restrained (HR) and head-unrestrained (HU) gaze shifts. We sought to characterize how gaze and its eye-in-head component differ when an “identical” oculomotor drive is used to produce HR and HU movements. To address this objective, the activities of pontine burst neurons were recorded during horizontal HR and HU gaze shifts. The burst profile recorded on each HU trial was compared with the burst waveform of every HR trial obtained for the same neuron. The oculomotor drive was assumed to be comparable for the pair yielding the lowest root-mean-squared error. For matched pairs of HR and HU trials, the peak eye-in-head velocity was substantially smaller in the HU condition, and the reduction was usually greater than the peak head velocity of the HU trial. A time-varying attenuation index, defined as the difference in HR and HU eye velocity waveforms divided by head velocity [α = ( Ḣhr − Ėhu)/ Ḣ] was computed. The index was variable at the onset of the gaze shift, but it settled at values several times greater than 1. The index then decreased gradually during the movement and stabilized at 1 around the end of gaze shift. These results imply that substantial attenuation in eye velocity occurs, at least partially, downstream of the burst neurons. We speculate on the potential roles of burst-tonic neurons in the neural integrator and various cell types in the vestibular nuclei in mediating the attenuation in eye velocity in the presence of head movements.


2002 ◽  
Vol 87 (5) ◽  
pp. 2337-2357 ◽  
Author(s):  
Jefferson E. Roy ◽  
Kathleen E. Cullen

The vestibuloocular reflex (VOR) effectively stabilizes the visual world on the retina over the wide range of head movements generated during daily activities by producing an eye movement of equal and opposite amplitude to the motion of the head. Although an intact VOR is essential for stabilizing gaze during walking and running, it can be counterproductive during certain voluntary behaviors. For example, primates use rapid coordinated movements of the eyes and head (gaze shifts) to redirect the visual axis from one target of interest to another. During these self-generated head movements, a fully functional VOR would generate an eye-movement command in the direction opposite to that of the intended shift in gaze. Here, we have investigated how the VOR pathways process vestibular information across a wide range of behaviors in which head movements were either externally applied and/or self-generated and in which the gaze goal was systematically varied (i.e., stabilize vs. redirect). VOR interneurons [i.e., type I position-vestibular-pause (PVP) neurons] were characterized during head-restrained passive whole-body rotation, passive head-on-body rotation, active eye-head gaze shifts, active eye-head gaze pursuit, self-generated whole-body motion, and active head-on-body motion made while the monkey was passively rotated. We found that regardless of the stimulation condition, type I PVP neuron responses to head motion were comparable whenever the monkey stabilized its gaze. In contrast, whenever the monkey redirected its gaze, type I PVP neurons were significantly less responsive to head velocity. We also performed a comparable analysis of type II PVP neurons, which are likely to contribute indirectly to the VOR, and found that they generally behaved in a quantitatively similar manner. Thus our findings support the hypothesis that the activity of the VOR pathways is reduced “on-line” whenever the current behavioral goal is to redirect gaze. By characterizing neuronal responses during a variety of experimental conditions, we were also able to determine which inputs contribute to the differential processing of head-velocity information by PVP neurons. We show that neither neck proprioceptive inputs, an efference copy of neck motor commands nor the monkey's knowledge of its self-motion influence the activity of PVP neurons per se. Rather we propose that efference copies of oculomotor/gaze commands are responsible for the behaviorally dependent modulation of PVP neurons (and by extension for modulation of the status of the VOR) during gaze redirection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chloe Callahan-Flintoft ◽  
Christian Barentine ◽  
Jonathan Touryan ◽  
Anthony J. Ries

Using head mounted displays (HMDs) in conjunction with virtual reality (VR), vision researchers are able to capture more naturalistic vision in an experimentally controlled setting. Namely, eye movements can be accurately tracked as they occur in concert with head movements as subjects navigate virtual environments. A benefit of this approach is that, unlike other mobile eye tracking (ET) set-ups in unconstrained settings, the experimenter has precise control over the location and timing of stimulus presentation, making it easier to compare findings between HMD studies and those that use monitor displays, which account for the bulk of previous work in eye movement research and vision sciences more generally. Here, a visual discrimination paradigm is presented as a proof of concept to demonstrate the applicability of collecting eye and head tracking data from an HMD in VR for vision research. The current work’s contribution is 3-fold: firstly, results demonstrating both the strengths and the weaknesses of recording and classifying eye and head tracking data in VR, secondly, a highly flexible graphical user interface (GUI) used to generate the current experiment, is offered to lower the software development start-up cost of future researchers transitioning to a VR space, and finally, the dataset analyzed here of behavioral, eye and head tracking data synchronized with environmental variables from a task specifically designed to elicit a variety of eye and head movements could be an asset in testing future eye movement classification algorithms.


1999 ◽  
Vol 81 (5) ◽  
pp. 2517-2537 ◽  
Author(s):  
Chiju Chen-Huang ◽  
Robert A. McCrea

Effects of viewing distance on the responses of horizontal canal–related secondary vestibular neurons during angular head rotation. The eye movements generated by the horizontal canal–related angular vestibuloocular reflex (AVOR) depend on the distance of the image from the head and the axis of head rotation. The effects of viewing distance on the responses of 105 horizontal canal–related central vestibular neurons were examined in two squirrel monkeys that were trained to fixate small, earth-stationary targets at different distances (10 and 150 cm) from their eyes. The majority of these cells (77/105) were identified as secondary vestibular neurons by synaptic activation following electrical stimulation of the vestibular nerve. All of the viewing distance–sensitive units were also sensitive to eye movements in the absence of head movements. Some classes of eye movement–related vestibular units were more sensitive to viewing distance than others. For example, the average increase in rotational gain (discharge rate/head velocity) of position-vestibular-pause units was 20%, whereas the gain increase of eye-head-velocity units was 44%. The concomitant change in gain of the AVOR was 11%. Near viewing responses of units phase lagged the responses they generated during far target viewing by 6–25°. A similar phase lag was not observed in either the near AVOR eye movements or in the firing behavior of burst-position units in the vestibular nuclei whose firing behavior was only related to eye movements. The viewing distance–related increase in the evoked eye movements and in the rotational gain of all unit classes declined progressively as stimulus frequency increased from 0.7 to 4.0 Hz. When monkeys canceled their VOR by fixating head-stationary targets, the responses recorded during near and far target viewing were comparable. However, the viewing distance–related response changes exhibited by central units were not directly attributable to the eye movement signals they generated. Subtraction of static eye position signals reduced, but did not abolish viewing distance gain changes in most units. Smooth pursuit eye velocity sensitivity and viewing distance sensitivity were not well correlated. We conclude that the central premotor pathways that mediate the AVOR also mediate viewing distance–related changes in the reflex. Because irregular vestibular nerve afferents are necessary for viewing distance–related gain changes in the AVOR, we suggest that a central estimate of viewing distance is used to parametrically modify vestibular afferent inputs to secondary vestibuloocular reflex pathways.


1987 ◽  
Vol 57 (5) ◽  
pp. 1484-1497 ◽  
Author(s):  
S. B. Khalsa ◽  
R. D. Tomlinson ◽  
D. W. Schwarz ◽  
J. P. Landolt

Responses of single neurons were recorded in the medial and descending vestibular nuclei (MVN and DVN) and in the deep cerebellar nuclei of three juvenile rhesus monkeys (Macaca mulatta). Neuronal activity was measured during both passive sinusoidal and nonsinusoidal whole body rotation (peak velocities were under 90 degrees/s) and during active head movements. Although the active head movements occasionally exceeded 300 degrees/s, most exhibited peak velocities of less than 200 degrees/s. A total of 133 units sensitive to horizontal head rotation were recorded, and of these, 38 were held for sufficient time to obtain both passive and active head movement data. Comparison of the neuronal firing patterns obtained during active and passive head movements revealed no apparent differences. Thus neurons that were observed to burst or pause during saccades with the head fixed continued to do so when the head was free. Both the sensitivity to head velocity and the "inferred" spontaneous firing rate were compared during active and passive head movements by plotting rate-velocity curves for both conditions. When the data points were fitted with linear regression lines, no statistically significant differences in either sensitivity or spontaneous rate were found. The present study provides no evidence that efferent vestibular activity alters the properties of afferent vestibular neurons during active head movements, as has previously been suggested (21). Furthermore, neurons in the rostral portions of the vestibular nuclei in primates encode head velocity based entirely on labyrinthine information. Neither neck proprioceptors nor an efference copy of the head movement motor program seem to contribute significantly to the firing patterns observed.


2013 ◽  
Vol 109 (10) ◽  
pp. 2571-2584 ◽  
Author(s):  
Shawn D. Newlands ◽  
Min Wei

The rotational vestibulo-ocular reflex in primates is linear and stabilizes gaze in space over a large range of head movements. Best evidence suggests that position-vestibular-pause (PVP) and eye-head velocity (EHV) neurons in the vestibular nuclei are the primary mediators of vestibulo-ocular reflexes for rotational head movements, yet the linearity of these neurons has not been extensively tested. The current study was undertaken to understand how varying magnitudes of yaw rotation are coded in these neurons. Sixty-six PVP and 41 EHV neurons in the rostral vestibular nuclei of 7 awake rhesus macaques were recorded over a range of frequencies (0.1 to 2 Hz) and peak velocities (7.5 to 210°/s at 0.5 Hz). The sensitivity (gain) of the neurons decreased with increasing peak velocity of rotation for all PVP neurons and EHV neurons sensitive to ipsilateral rotation (type I). The sensitivity of contralateral rotation-sensitive (type II) EHV neurons did not significantly decrease with increasing peak velocity. These data show that, like non-eye-movement-related vestibular nuclear neurons that are believed to mediate nonlinear vestibular functions, PVP neurons involved in the linear vestibulo-ocular reflex also behave in a nonlinear fashion. Similar to other sensory nuclei, the magnitude of the vestibular stimulus is not linearly coded by the responses of vestibular neurons; rather, amplitude compression extends the dynamic range of PVP and type I EHV vestibular neurons.


1992 ◽  
Vol 68 (2) ◽  
pp. 471-484 ◽  
Author(s):  
R. Boyle ◽  
J. M. Goldberg ◽  
S. M. Highstein

1. A previous study measured the relative contributions made by regularly and irregularly discharging afferents to the monosynaptic vestibular nerve (Vi) input of individual secondary neurons located in and around the superior vestibular nucleus of barbiturate-anesthetized squirrel monkeys. Here, the analysis is extended to more caudal regions of the vestibular nuclei, which are a major source of both vestibuloocular and vestibulospinal pathways. As in the previous study, antidromic stimulation techniques are used to classify secondary neurons as oculomotor or spinal projecting. In addition, spinal-projecting neurons are distinguished by their descending pathways, their termination levels in the spinal cord, and their collateral projections to the IIIrd nucleus. 2. Monosynaptic excitatory postsynaptic potentials (EPSPs) were recorded intracellularly from secondary neurons as shocks of increasing strength were applied to Vi. Shocks were normalized in terms of the threshold (T) required to evoke field potentials in the vestibular nuclei. As shown previously, the relative contribution of irregular afferents to the total monosynaptic Vi input of each secondary neuron can be expressed as a %I index, the ratio (x100) of the relative sizes of the EPSPs evoked by shocks of 4 x T and 16 x T. 3. Antidromic stimulation was used to type secondary neurons as 1) medial vestibulospinal tract (MVST) cells projecting to spinal segments C1 or C6; 2) lateral vestibulospinal tract (LVST) cells projecting to C1, C6; or L1; 3) vestibulooculo-collic (VOC) cells projecting both to the IIIrd nucleus and by way of the MVST to C1 or C6; and 4) vestibuloocular (VOR) neurons projecting to the IIIrd nucleus but not to the spinal cord. Most of the neurons were located in the lateral vestibular nucleus (LV), including its dorsal (dLV) and ventral (vLV) divisions, and adjacent parts of the medial (MV) and descending nuclei (DV). Cells receiving quite different proportions of their direct inputs from regular and irregular afferents were intermingled in all regions explored. 4. LVST neurons are restricted to LV and DV and show a somatotopic organization. Those destined for the cervical and thoracic cord come from vLV, from a transition zone between vLV and DV, and to a lesser extent from dLV. Lumbar-projecting neurons are located more dorsally in dLV and more caudally in DV. MVST neurons reside in MV and in the vLV-DV transition zone.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document