Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations

1995 ◽  
Vol 73 (3) ◽  
pp. 1122-1134 ◽  
Author(s):  
L. L. Chen ◽  
S. P. Wise

1. The companion paper reported that a substantial proportion of cells in the supplementary eye field (SEF) of macaque monkeys show significant evolution of neuronal activity as subjects learn new and arbitrary stimulus-saccade associations. The purpose of the present study was to compare and contrast the activity of the SEF and the frontal eye field (FEF) during such conditional oculomotor learning. 2. In both SEF and FEF, we observed learning-dependent and learning-selective activity, defined as significant evolution of task-related activity as monkeys learned which of four saccades was instructed by a novel stimulus. By definition, in addition to changes as the monkeys learned the instructional significance of a novel instruction stimulus, learning-dependent activity also showed task-related modulation for trials instructed by familiar stimuli, whereas learning-selective activity did not. Of the 186 SEF neurons adequately tested, 81 (44%) showed one of these two categories of learning-related change. By contrast, of the 90 FEF neurons adequately tested, only 14 (16%) showed similar properties. This difference was highly statistically significant (chi 2 = 21.1; P < 0.001). 3. We also observed persistent differences in activity for trials with familiar versus novel instruction stimuli, which we termed learning-static effects. In some cases, the learning-static effect coexisted with learning-dependent or learning-selective changes in activity, although in others it did not. In the former cases, activity changed systematically during learning, but reached a level that differed from that for familiar stimuli instructing the same saccade. In the latter cases, the activity did not change significantly as the monkey learned new conditional oculomotor associations, but did show a significant difference depending upon whether a novel or familiar stimulus instructed a given saccade. Overall, 66 of 186 (35%) cells in the SEF and 17 of 90 (19%) cells in the FEF showed learning-static effects in one or more task periods. This difference was statistically significant (chi 2 = 7.9; P < 0.005). 4. The significant difference in the properties of SEF and FEF cells suggests a functional dissociation of the two areas during conditional oculomotor learning. In this respect, the FEF resembles the primary motor cortex, whereas the SEF resembles the premotor cortex.

2000 ◽  
Vol 83 (3) ◽  
pp. 1764-1769 ◽  
Author(s):  
Naotaka Fujii ◽  
Hajime Mushiake ◽  
Jun Tanji

To investigate functional differences between the rostral and caudal parts of the dorsal premotor cortex (PMd), we first examined the effects of intracortical microstimulation (ICMS) while monkeys were performing oculomotor and limb motor tasks or while they were at rest. We found that saccades were evoked from the rostral part (PMdr) whereas ICMS in the caudal part (PMdc) predominantly produced forelimb or body movements. Subsequently, we examined neuronal activity in relation to the performance of visually cued and memorized saccades while monkeys reached an arm toward a visual target. We found that roughly equal numbers of PMdr neurons were active during performance of the oculomotor and limb motor tasks. In contrast, the majority of PMdc neurons were related preferentially to arm movements and not to saccades. In the subsequent analysis, we found that the oculomotor effects evoked in the PMdr differ from the effects evoked in either the frontal eye field (FEF) or supplementary eye field (SEF). These findings suggest that the PMdr is involved in oculomotor as well as limb motor behavior. However, the oculomotor involvement of the PMdr seems to have a functional aspect different from that operating in the FEF and SEF.


2020 ◽  
Author(s):  
Jie Ma ◽  
Xu-Yun Hua ◽  
Mou-Xiong Zheng ◽  
Jia-Jia Wu ◽  
Bei-Bei Huo ◽  
...  

Abstract Background: Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex. However, it’s not clear whether hip disorder with pain induces somatotopic map plasticity in the cortex. We aimed to evaluate the surface-based map plasticity of the somatotopic cortex in hip disorder at local and extensive levels by resting-state functional magnetic resonance imaging (rs-fMRI).Methods: 20 patients with osteonecrosis of the femoral head (ONFH) (12 males and 8 females, age= 56.80±13.60 years) with Visual Analogue Scale (VAS) scores ≥ 4 and 20 healthy controls (9 males and 11 females, age= 54.56±10.23 years) were enrolled in this study. rs-fMRI data and T1 imaging data were collected, and surface-based regional homogeneity (ReHo), seed-based functional connectivity (FC), cortical thickness and the volume of subcortical gray nuclei were calculated.Results: Compared with the healthy controls, the ONFH patients showed significantly increased surface-based ReHo in areas distributed mainly in the left dorsolateral prefrontal cortex and frontal eye field, the right frontal eye field and the premotor cortex and decreased surface-based ReHo in the right primary motor cortex and primary sensory cortex. When the area with decreased surface-based ReHo in the frontal eye field and right premotor cortex was used as the regions of interest (ROI), compared with the controls, the ONFH patients displayed increased FC in the right middle frontal cortex and right inferior parietal cortex and decreased FC in the right precentral cortex and right middle occipital cortex. ONFH patients also showed significantly decreased cortical thickness in the para-insular area, supplementary motor cortex area and frontal eye field and decreased volume of subcortical gray matter nuclei in the right nucleus accumbens (479.32±88.26 vs 539.44±68.36, P=0.026). Conclusions: Hip disorder patients showed cortical plasticity changes, mainly in sensorimotor and pain-related regions.


1995 ◽  
Vol 73 (3) ◽  
pp. 1101-1121 ◽  
Author(s):  
L. L. Chen ◽  
S. P. Wise

1. The supplementary eye field (SEF) has been viewed as a premotor cortical field for the selection and control of saccadic eye movements. Drawing on studies of the neighboring premotor cortex, we hypothesized that if the SEF participates in the selection of action based on arbitrary stimulus-response associations, then task-related activity in the SEF should change during the learning of such associations. 2. Rhesus monkeys were operantly conditioned to make a saccadic eye movement to one of four targets (7 deg up, down, left, and right from center) in response to a foveal instruction stimulus (IS). One and only one of those four possible responses was arbitrarily designated "correct" for each IS. The monkeys responded to familiar ISs, four stimuli that remained unchanged throughout training and recording, as well as to novel ISs, which the monkeys had not previously seen. The monkeys initially chose responses to novel stimuli by trial and error, with near chance levels of performance, but quickly learned to select the correct saccade. 3. We studied 186 SEF cells as monkeys learned new visuomotor associations. Neuronal activity was quantified in four task periods: during the presentation of the IS, during an instructed delay period (i.e., after the removal of the IS but before a trigger or "go" stimulus), just before the saccade, and after the saccade during fixation of the target location. The discharge rate in each task period was considered a separate case for analysis, compared with that in a reference period preceding the IS, and eliminated from further analysis if not significantly different. 4. We observed two main categories of activity change during learning, which we termed learning selective and learning dependent. Learning-selective cases showed a significant evolution in activity as the monkeys learned which saccade was instructed by a novel IS, but had no significant modulation during trials with familiar ISs. Many of these cells were virtually inactive on trials with familiar ISs. However, they initially showed dramatic modulation when tested with a novel IS. As the monkey chose the correct saccade (or target) with increasing reliability, the modulation often decremented until the cell was again relatively unmodulated, as observed during familiar-IS trials. These cells usually remained relatively inactive until the monkeys were challenged to start learning another new stimulus-response association. Learning-selective activity was observed in all task periods, and 33 (18%) of the 186 adequately tested SEF cells showed learning-selective activity in one or more task periods.(ABSTRACT TRUNCATED AT 400 WORDS)


2017 ◽  
Vol 118 (6) ◽  
pp. 3293-3310 ◽  
Author(s):  
Kiyoshi Kurata

To determine the role of the periarcuate cortex during coordinated eye and hand movements in monkeys, the present study examined neuronal activity in this region during movement with the hand, eyes, or both as effectors toward a visuospatial target. Similar to the primary motor cortex (M1), the dorsal premotor cortex contained a higher proportion of neurons that were closely related to hand movements, whereas saccade-related neurons were frequently recorded from the frontal eye field (FEF). Interestingly, neurons that exhibited activity related to both eye and hand movements were recorded most frequently in the ventral premotor cortex (PMv), located between the FEF and M1. Neuronal activity in the periarcuate cortex was highly modulated during coordinated movements compared with either eye or hand movement only. Additionally, a small number of neurons were active specifically during one of the three task modes, which could be dissociated from the effector activity. In this case, neuron onset was either ahead of or behind the onset of eye and/or hand movement, and some neuronal activity lasted until reward delivery signaled successful completion of reaching. The present findings indicate that the periarcuate cortex, particularly the PMv, plays important roles in orchestrating coordinated movements from the initiation to the termination of reaching. NEW & NOTEWORTHY Movement-related neuronal activity was recorded throughout the periarcuate cortex of monkeys that performed a task requiring them to move their hand only, eyes only, or both hand and eyes toward visuospatial targets. Most typically, neurons were found that were commonly active regardless of different effectors, from movement initiation to completion of a successful outcome. The findings suggest that the periarcuate cortex as a whole plays a crucial role in initiating and completing coordinated eye-hand movements.


1996 ◽  
Vol 75 (5) ◽  
pp. 2187-2191 ◽  
Author(s):  
H. Mushiake ◽  
N. Fujii ◽  
J. Tanji

1. We studied neuronal activity in the supplementary eye field (SEF) and frontal eye field (FEF) of a monkey during performance of a conditional motor task that required capturing of a target either with a saccadic eye movement (the saccade-only condition) or with an eye-hand reach (the saccade-and-reach condition), according to visual instructions. 2. Among 106 SEF neurons that showed presaccadic activity, more than one-half of them (54%) were active preferentially under the saccade-only condition (n = 12) or under the saccade-and-reach condition (n = 45), while the remaining 49 neurons were equally active in both conditions. 3. By contrast, most (97%) of the 109 neurons in the FEF exhibited approximately equal activity in relation to saccades under the two conditions. 4. The present results suggest the possibility that SEF neurons, at least in part, are involved in signaling whether the motor task is oculomotor or combined eye-arm movements, whereas FEF neurons are mostly related to oculomotor control.


1987 ◽  
Vol 57 (1) ◽  
pp. 179-200 ◽  
Author(s):  
J. Schlag ◽  
M. Schlag-Rey

Electrical microstimulation and unit recording were performed in dorsomedial frontal cortex of four alert monkeys to identify an oculomotor area whose existence had been postulated rostral to the supplementary motor area. Contraversive saccades were evoked from 129 sites by stimulation. Threshold currents were lower than 20 microA in half the tests. Response latencies were usually longer than 50 ms (minimum: 30 ms). Eye movements were occasionally accompanied by blinks, ear, or neck movements. The cortical area yielding these movements was at the superior edge of the frontal lobe just rostral to the region from which limb movements could be elicited. Depending on the site of stimulation, saccades varied between two extremes: from having rather uniform direction and size, to converging toward a goal defined in space. The transition between these extremes was gradual with no evidence that these two types were fundamentally different. From surface to depth of cortex, direction and amplitude of evoked saccades were similar or changed progressively. No clear systematization was found depending on location along rostrocaudal or mediolateral axes of the cortex. The dorsomedial oculomotor area mapped was approximately 7 mm long and 6 mm wide. Combined eye and head movements were elicited from one of ten sites stimulated when the head was unrestrained. In the other nine cases, saccades were not accompanied by head rotation, even when higher currents or longer stimulus trains were applied. Presaccadic unit activity was recorded from 62 cells. Each of these cells had a preferred direction that corresponded to the direction of the movement evoked by local microstimulation. Presaccadic activity occurred with self-initiated as well as visually triggered saccades. It often led self-initiated saccades by more than 300 ms. Recordings made with the head free showed that the firing could not be interpreted as due to attempted head movements. Many dorsomedial cortical neurons responded to photic stimuli, either phasically or tonically. Sustained responses (activation or inhibition) were observed during target fixation. Twenty-one presaccadic units showed tonic changes of activity with fixation. Justification is given for considering the cortical area studied as a supplementary eye field. It shares many common properties with the arcuate frontal eye field. Differences noted in this study include: longer latency of response to electrical stimulation, possibility to evoke saccades converging apparently toward a goal, and long-lead unit activity with spontaneous saccades.


2021 ◽  
Vol 9 (22) ◽  

It is known that digits have a positive effect on the performance of short term memory (STM) span and it is called the digit superiority effect. This study aims to examine the effect of familiar stimuli (digits, colors, digit names, color names, and words) on STM span. In order to measure STM capacity, a memory span task was used including the digit, word, and color span lists. 91 participants (44 female, 47 male) aged between 18-27 (M = 21,43, SD = 1.50) participated in the study that consisted of three different experiments. Results of Experiment 1 revealed that there was a significant difference between the digit name and word with regard to span size and total span. In Experiment 2 and 3, the main effect of familiar stimulus type on total span and span size was significant, and also the difference between all types of stimuli was significant (Experiment II, digit name>word=color name; Experiment III, digit>digit name>color name>color). The common result obtained from all experiments is that digits are superior with regard to STM span than other familiar stimuli types such as words, color names, colors. This study confirmed that digit superiority effect is indispensable on verbal and visual STM span. Keywords Digit superiority, short term memory, memory span


2010 ◽  
Vol 103 (2) ◽  
pp. 801-816 ◽  
Author(s):  
Veit Stuphorn ◽  
Joshua W. Brown ◽  
Jeffrey D. Schall

The goal of this study was to determine whether the activity of neurons in the supplementary eye field (SEF) is sufficient to control saccade initiation in macaque monkeys performing a saccade countermanding (stop signal) task. As previously observed, many neurons in the SEF increase the discharge rate before saccade initiation. However, when saccades are canceled in response to a stop signal, effectively no neurons with presaccadic activity display discharge rate modulation early enough to contribute to saccade cancellation. Moreover, SEF neurons do not exhibit a specific threshold discharge rate that could trigger saccade initiation. Yet, we observed more subtle relations between SEF activation and saccade production. The activity of numerous SEF neurons was correlated with response time and varied with sequential adjustments in response latency. Trials in which monkeys canceled or produced a saccade in a stop signal trial were distinguished by a modest difference in discharge rate of these SEF neurons before stop signal or target presentation. These findings indicate that neurons in the SEF, in contrast to counterparts in the frontal eye field and superior colliculus, do not contribute directly and immediately to the initiation of visually guided saccades. However the SEF may proactively regulate saccade production by biasing the balance between gaze-holding and gaze-shifting based on prior performance and anticipated task requirements.


Sign in / Sign up

Export Citation Format

Share Document