scholarly journals Role of Supplementary Eye Field in Saccade Initiation: Executive, Not Direct, Control

2010 ◽  
Vol 103 (2) ◽  
pp. 801-816 ◽  
Author(s):  
Veit Stuphorn ◽  
Joshua W. Brown ◽  
Jeffrey D. Schall

The goal of this study was to determine whether the activity of neurons in the supplementary eye field (SEF) is sufficient to control saccade initiation in macaque monkeys performing a saccade countermanding (stop signal) task. As previously observed, many neurons in the SEF increase the discharge rate before saccade initiation. However, when saccades are canceled in response to a stop signal, effectively no neurons with presaccadic activity display discharge rate modulation early enough to contribute to saccade cancellation. Moreover, SEF neurons do not exhibit a specific threshold discharge rate that could trigger saccade initiation. Yet, we observed more subtle relations between SEF activation and saccade production. The activity of numerous SEF neurons was correlated with response time and varied with sequential adjustments in response latency. Trials in which monkeys canceled or produced a saccade in a stop signal trial were distinguished by a modest difference in discharge rate of these SEF neurons before stop signal or target presentation. These findings indicate that neurons in the SEF, in contrast to counterparts in the frontal eye field and superior colliculus, do not contribute directly and immediately to the initiation of visually guided saccades. However the SEF may proactively regulate saccade production by biasing the balance between gaze-holding and gaze-shifting based on prior performance and anticipated task requirements.

1996 ◽  
Vol 75 (5) ◽  
pp. 2187-2191 ◽  
Author(s):  
H. Mushiake ◽  
N. Fujii ◽  
J. Tanji

1. We studied neuronal activity in the supplementary eye field (SEF) and frontal eye field (FEF) of a monkey during performance of a conditional motor task that required capturing of a target either with a saccadic eye movement (the saccade-only condition) or with an eye-hand reach (the saccade-and-reach condition), according to visual instructions. 2. Among 106 SEF neurons that showed presaccadic activity, more than one-half of them (54%) were active preferentially under the saccade-only condition (n = 12) or under the saccade-and-reach condition (n = 45), while the remaining 49 neurons were equally active in both conditions. 3. By contrast, most (97%) of the 109 neurons in the FEF exhibited approximately equal activity in relation to saccades under the two conditions. 4. The present results suggest the possibility that SEF neurons, at least in part, are involved in signaling whether the motor task is oculomotor or combined eye-arm movements, whereas FEF neurons are mostly related to oculomotor control.


2010 ◽  
Vol 104 (3) ◽  
pp. 1523-1537 ◽  
Author(s):  
Erik E. Emeric ◽  
Melanie Leslie ◽  
Pierre Pouget ◽  
Jeffrey D. Schall

We describe intracranial local field potentials (LFPs) recorded in the supplementary eye field (SEF) of macaque monkeys performing a saccade countermanding task. The most prominent feature at 90% of the sites was a negative-going polarization evoked by a contralateral visual target. At roughly 50% of sites a negative-going polarization was observed preceding saccades, but in stop signal trials this polarization was not modulated in a manner sufficient to control saccade initiation. When saccades were canceled in stop signal trials, LFP modulation increased with the inferred magnitude of response conflict derived from the coactivation of gaze-shifting and gaze-holding neurons. At 30% of sites, a pronounced negative-going polarization occurred after errors. This negative polarity did not appear in unrewarded correct trials. Variations of response time with trial history were not related to any features of the LFP. The results provide new evidence that error-related and conflict-related but not feedback-related signals are conveyed by the LFP in the macaque SEF and are important for identifying the generator of the error-related negativity.


2009 ◽  
Vol 102 (6) ◽  
pp. 3091-3100 ◽  
Author(s):  
Supriya Ray ◽  
Pierre Pouget ◽  
Jeffrey D. Schall

In the previous studies on the neural control of saccade initiation using the countermanding paradigm, movement and visuomovement neurons in the frontal eye field were grouped as movement-related neurons. The activity of both types of neurons was modulated when a saccade was inhibited in response to a stop signal, and this modulation occurred early enough to contribute to the control of the saccade initiation. We now report a functional difference between these two classes of neurons when saccades are produced. Movement neurons exhibited a progressive accumulation of discharge rate following target presentation that triggered a saccade when it reached a threshold. When saccades were inhibited with lower probability in response to a stop signal appearing at longer delays, this accumulating activity was interrupted at levels progressively closer to the threshold. In contrast, visuomovement neurons exhibited a maintained elevated discharge rate following target presentation that was followed by a further enhancement immediately before the saccade initiation. When saccades were inhibited in response to a stop signal, the late enhancement was absent and the maintained activity decayed regardless of stop-signal delay. These results demonstrate that the activity of movement neurons realizes the progressive commitment to the saccade initiation modeled by the activation of the go unit in computational models of countermanding performance. The lack of correspondence of the activity of visuomovement neurons with any elements of these models indicates that visuomovement neurons perform a function other than the saccade preparation such as a corollary discharge to update visual processing.


1994 ◽  
Vol 71 (3) ◽  
pp. 1250-1253 ◽  
Author(s):  
G. S. Russo ◽  
C. J. Bruce

1. We studied neuronal activity in the monkey's frontal eye field (FEF) in conjunction with saccades directed to auditory targets. 2. All FEF neurons with movement activity preceding saccades to visual targets also were active preceding saccades to auditory targets, even when such saccades were made in the dark. Movement cells generally had comparable bursts for aurally and visually guided saccades; visuomovement cells often had weaker bursts in conjunction with aurally guided saccades. 3. When these cells were tested from different initial fixation directions, movement fields associated with aurally guided saccades, like fields mapped with visual targets, were a function of saccade dimensions, and not the speaker's spatial location. Thus, even though sound location cues are chiefly craniotopic, the crucial factor for a FEF discharge before aurally guided saccades was the location of auditory target relative to the current direction of gaze. 4. Intracortical microstimulation at the sites of these cells evoked constant-vector saccades, and not goal-directed saccades. The direction and size of electrically elicited saccades generally matched the cell's movement field for aurally guided saccades. 5. Thus FEF activity appears to have a role in aurally guided as well as visually guided saccades. Moreover, visual and auditory target representations, although initially obtained in different coordinate systems, appear to converge to a common movement vector representation at the FEF stage of saccadic processing that is appropriate for transmittal to saccade-related burst neurons in the superior colliculus and pons.


1987 ◽  
Vol 57 (1) ◽  
pp. 179-200 ◽  
Author(s):  
J. Schlag ◽  
M. Schlag-Rey

Electrical microstimulation and unit recording were performed in dorsomedial frontal cortex of four alert monkeys to identify an oculomotor area whose existence had been postulated rostral to the supplementary motor area. Contraversive saccades were evoked from 129 sites by stimulation. Threshold currents were lower than 20 microA in half the tests. Response latencies were usually longer than 50 ms (minimum: 30 ms). Eye movements were occasionally accompanied by blinks, ear, or neck movements. The cortical area yielding these movements was at the superior edge of the frontal lobe just rostral to the region from which limb movements could be elicited. Depending on the site of stimulation, saccades varied between two extremes: from having rather uniform direction and size, to converging toward a goal defined in space. The transition between these extremes was gradual with no evidence that these two types were fundamentally different. From surface to depth of cortex, direction and amplitude of evoked saccades were similar or changed progressively. No clear systematization was found depending on location along rostrocaudal or mediolateral axes of the cortex. The dorsomedial oculomotor area mapped was approximately 7 mm long and 6 mm wide. Combined eye and head movements were elicited from one of ten sites stimulated when the head was unrestrained. In the other nine cases, saccades were not accompanied by head rotation, even when higher currents or longer stimulus trains were applied. Presaccadic unit activity was recorded from 62 cells. Each of these cells had a preferred direction that corresponded to the direction of the movement evoked by local microstimulation. Presaccadic activity occurred with self-initiated as well as visually triggered saccades. It often led self-initiated saccades by more than 300 ms. Recordings made with the head free showed that the firing could not be interpreted as due to attempted head movements. Many dorsomedial cortical neurons responded to photic stimuli, either phasically or tonically. Sustained responses (activation or inhibition) were observed during target fixation. Twenty-one presaccadic units showed tonic changes of activity with fixation. Justification is given for considering the cortical area studied as a supplementary eye field. It shares many common properties with the arcuate frontal eye field. Differences noted in this study include: longer latency of response to electrical stimulation, possibility to evoke saccades converging apparently toward a goal, and long-lead unit activity with spontaneous saccades.


2010 ◽  
Vol 103 (5) ◽  
pp. 2433-2445 ◽  
Author(s):  
Tadashi Ogawa ◽  
Hidehiko Komatsu

Previous studies have suggested that spontaneous fluctuations in neuronal activity reflect intrinsic functional brain architecture. Inspired by these findings, we analyzed baseline neuronal activity in the monkey frontal eye field (FEF; a visuomotor area) and area V4 (a visual area) during the fixation period of a cognitive behavioral task in the absence of any task-specific stimuli or behaviors. Specifically, we examined the temporal storage capacity of the instantaneous discharge rate in FEF and V4 neurons by calculating the correlation of the spike count in a bin with that in another bin during the baseline activity of a trial. We found that most FEF neurons fired significantly more (or less) in one bin if they fired more (or less) in another bin within a trial, even when these two time bins were separated by hundreds of milliseconds. By contrast, similar long time-lag correlations were observed in only a small fraction of V4 neurons, indicating that temporal correlations were considerably stronger in FEF compared with those in V4 neurons. Additional analyses revealed that the findings were not attributable to other task-related variables or ongoing behavioral performance, suggesting that the differences in temporal correlation strength reflect differences in intrinsic structural and functional architecture between visual and visuomotor areas. Thus FEF neurons probably play a greater role than V4 neurons in neural circuits responsible for temporal storage in activity.


1995 ◽  
Vol 73 (3) ◽  
pp. 1122-1134 ◽  
Author(s):  
L. L. Chen ◽  
S. P. Wise

1. The companion paper reported that a substantial proportion of cells in the supplementary eye field (SEF) of macaque monkeys show significant evolution of neuronal activity as subjects learn new and arbitrary stimulus-saccade associations. The purpose of the present study was to compare and contrast the activity of the SEF and the frontal eye field (FEF) during such conditional oculomotor learning. 2. In both SEF and FEF, we observed learning-dependent and learning-selective activity, defined as significant evolution of task-related activity as monkeys learned which of four saccades was instructed by a novel stimulus. By definition, in addition to changes as the monkeys learned the instructional significance of a novel instruction stimulus, learning-dependent activity also showed task-related modulation for trials instructed by familiar stimuli, whereas learning-selective activity did not. Of the 186 SEF neurons adequately tested, 81 (44%) showed one of these two categories of learning-related change. By contrast, of the 90 FEF neurons adequately tested, only 14 (16%) showed similar properties. This difference was highly statistically significant (chi 2 = 21.1; P < 0.001). 3. We also observed persistent differences in activity for trials with familiar versus novel instruction stimuli, which we termed learning-static effects. In some cases, the learning-static effect coexisted with learning-dependent or learning-selective changes in activity, although in others it did not. In the former cases, activity changed systematically during learning, but reached a level that differed from that for familiar stimuli instructing the same saccade. In the latter cases, the activity did not change significantly as the monkey learned new conditional oculomotor associations, but did show a significant difference depending upon whether a novel or familiar stimulus instructed a given saccade. Overall, 66 of 186 (35%) cells in the SEF and 17 of 90 (19%) cells in the FEF showed learning-static effects in one or more task periods. This difference was statistically significant (chi 2 = 7.9; P < 0.005). 4. The significant difference in the properties of SEF and FEF cells suggests a functional dissociation of the two areas during conditional oculomotor learning. In this respect, the FEF resembles the primary motor cortex, whereas the SEF resembles the premotor cortex.


1997 ◽  
Vol 77 (5) ◽  
pp. 2252-2267 ◽  
Author(s):  
Douglas D. Burman ◽  
Charles J. Bruce

Burman, Douglas D. and Charles J. Bruce. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. J. Neurophysiol. 77: 2252–2267, 1997. Patients with frontal lobe damage have difficulty suppressing reflexive saccades to salient visual stimuli, indicating that frontal lobe neocortex helps to suppress saccades as well as to produce them. In the present study, a role for the frontal eye field (FEF) in suppressing saccades was demonstrated in macaque monkeys by application of intracortical microstimulation during the performance of a visually guided saccade task, a memory prosaccade task, and a memory antisaccade task. A train of low-intensity (20–50 μA) electrical pulses was applied simultaneously with the disappearance of a central fixation target, which was always the cue to initiate a saccade. Trials with and without stimulation were compared, and significantly longer saccade latencies on stimulation trials were considered evidence of suppression. Low-intensity stimulation suppressed task-related saccades at 30 of 77 sites tested. In many cases saccades were suppressed throughout the microstimulation period (usually 450 ms) and then executed shortly after the train ended. Memory-guided saccades were most dramatically suppressed and were often rendered hypometric, whereas visually guided saccades were less severely suppressed by stimulation. At 18 FEF sites, the suppression of saccades was the only observable effect of electrical stimulation. Contraversive saccades were usually more strongly suppressed than ipsiversive ones, and cells recorded at such purely suppressive sites commonly had either foveal receptive fields or postsaccadic responses. At 12 other FEF sites at which saccadic eye movements were elicited at low thresholds, task-related saccades whose vectors differed from that of the electrically elicited saccade were suppressed by electrical stimulation. Such suppression at saccade sites was observed even with currents below the threshold for eliciting saccades. Pure suppression sites tended to be located near or in the fundus, deeper in the anterior bank of the arcuate than elicited saccade sites. Stimulation in the prefrontal association cortex anterior to FEF did not suppress saccades, nor did stimulation in premotor cortex posterior to FEF. These findings indicate that the primate FEF can help orchestrate saccadic eye movements by suppressing inappropriate saccade vectors as well as by selecting, specifying, and triggering appropriate saccades. We hypothesize that saccades could be suppressed both through local FEF interactions and through FEF projections to subcortical regions involved in maintaining fixation.


Sign in / Sign up

Export Citation Format

Share Document