Reaching Movements With Similar Hand Paths but Different Arm Orientations. II. Activity of Individual Cells in Dorsal Premotor Cortex and Parietal Area 5

1997 ◽  
Vol 78 (5) ◽  
pp. 2413-2426 ◽  
Author(s):  
Stephen H. Scott ◽  
Lauren E. Sergio ◽  
John F. Kalaska

Scott, Stephen H., Lauren E. Sergio, and John F. Kalaska. Reaching movements with similar hand paths but different arm orientations. II. Activity of individual cells in dorsal premotor cortex and parietal area 5. J. Neurophysiol. 78: 2413–2426, 1997. Neuronal activity in primary motor cortex (MI) is altered when monkeys make reaching movements along similar handpaths at shoulder level with two different arm orientations, either in the natural orientation with the elbow positioned below the level of the shoulder and hand or in an abducted orientation with the elbow abducted nearly to shoulder level. The present study examines to what degree two other cortical areas, the dorsal premotor (PMd) and parietal area 5, also show modulation of cell activity related to arm geometry during reaching. The activity of most (89%) of the 207 cells in PMd recorded while monkeys made reaching movements showed a statistically significant change in activity between orientations [analysis of variation (ANOVA), P < 0.01]. A common effect of arm orientation on cell activity was a change in the overall level of discharge either before, during, and/or after movement (67%, ANOVA, task main effect, P < 0.01). Many cells (76%) showed a statistical change in their response to movement direction (ANOVA, task × direction interaction term, P < 0.01), including changes in dynamic range and changes in the preferred direction of cells that were directionally tuned in both arm orientations. Overall, these effects were similar qualitatively but not as strong quantitatively as those observed in MI. A sample of cells was recorded in area 5 of one monkey. Most (95%) of the 79 area 5 cells showed a change in activity when reaching movements were performed using different arm orientations (ANOVA, P < 0.01). As in PMd and MI, many area 5 cells (56, 71%) showed changes in their tonic discharge before, during, and/or after movement, and 70 cells (89%) showed changes in their response to movement direction (ANOVA, task × direction interaction term, P < 0.01). The observed changes in neuronal activity related to posture and movement in MI, PMd and area 5 demonstrate that single-cell activity in these cortical areas is not simply related to the spatial attributes of hand trajectory but is also strongly influenced by attributes of movement related to arm geometry.

1998 ◽  
Vol 80 (3) ◽  
pp. 1132-1150 ◽  
Author(s):  
Driss Boussaoud ◽  
Christophe Jouffrais ◽  
Frank Bremmer

Boussaoud, Driss, Christophe Jouffrais, and Frank Bremmer. Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey. J. Neurophysiol. 80: 1132–1150, 1998. Visual inputs to the brain are mapped in a retinocentric reference frame, but the motor system plans movements in a body-centered frame. This basic observation implies that the brain must transform target coordinates from one reference frame to another. Physiological studies revealed that the posterior parietal cortex may contribute a large part of such a transformation, but the question remains as to whether the premotor areas receive visual information, from the parietal cortex, readily coded in body-centered coordinates. To answer this question, we studied dorsal premotor cortex (PMd) neurons in two monkeys while they performed a conditional visuomotor task and maintained fixation at different gaze angles. Visual stimuli were presented on a video monitor, and the monkeys made limb movements on a panel of three touch pads located at the bottom of the monitor. A trial begins when the monkey puts its hand on the central pad. Then, later in the trial, a colored cue instructed a limb movement to the left touch pad if red or to the right one if green. The cues lasted for a variable delay, the instructed delay period, and their offset served as the go signal. The fixation spot was presented at the center of the screen or at one of four peripheral locations. Because the monkey's head was restrained, peripheral fixations caused a deviation of the eyes within the orbit, but for each fixation angle, the instructional cue was presented at nine locations with constant retinocentric coordinates. After the presentation of the instructional cue, 133 PMd cells displayed a phasic discharge (signal-related activity), 157 were tonically active during the instructed delay period (set-related or preparatory activity), and 104 were active after the go signal in relation to movement (movement-related activity). A large proportion of cells showed variations of the discharge rate in relation to limb movement direction, but only modest proportions were sensitive to the cue's location (signal, 43%; set, 34%; movement, 29%). More importantly, the activity of most neurons (signal, 74%; set, 79%; movement, 79%) varied significantly (analysis of variance, P < 0.05) with orbital eye position. A regression analysis showed that the neuronal activity varied linearly with eye position along the horizontal and vertical axes and can be approximated by a two-dimensional regression plane. These data provide evidence that eye position signals modulate the neuronal activity beyond sensory areas, including those involved in visually guided reaching limb movements. Further, they show that neuronal activity related to movement preparation and execution combines at least two directional parameters: arm movement direction and gaze direction in space. It is suggested that a substantial population of PMd cells codes limb movement direction in a head-centered reference frame.


2021 ◽  
Vol 31 (7) ◽  
pp. 1476-1487.e5 ◽  
Author(s):  
Tomohiko Takei ◽  
Stephen G. Lomber ◽  
Douglas J. Cook ◽  
Stephen H. Scott

2002 ◽  
Vol 88 (2) ◽  
pp. 1064-1072 ◽  
Author(s):  
Paul Cisek ◽  
John F. Kalaska

Recent studies have shown that gaze angle modulates reach-related neural activity in many cortical areas, including the dorsal premotor cortex (PMd), when gaze direction is experimentally controlled by lengthy periods of imposed fixation. We looked for gaze-related modulation in PMd during the brief fixations that occur when a monkey is allowed to look around freely without experimentally imposed gaze control while performing a center-out delayed arm-reaching task. During the course of the instructed-delay period, we found significant effects of gaze angle in 27–51% of PMd cells. However, for 90–95% of cells, these effects accounted for <20% of the observed discharge variance. The effect of gaze was significantly weaker than the effect of reach-related variables. In particular, cell activity during the delay period was more strongly related to the intended movement expressed in arm-related coordinates than in gaze-related coordinates. Under the same experimental conditions, many cells in medial parietal cortex exhibited much stronger gaze-related modulation and expressed intended movement in gaze-related coordinates. In summary, gaze direction-related modulation of cell activity is indeed expressed in PMd during the brief fixations that occur in natural oculomotor behavior, but its overall effect on cell activity is modest.


1994 ◽  
Vol 71 (3) ◽  
pp. 1281-1284 ◽  
Author(s):  
D. J. Crammond ◽  
J. F. Kalaska

1. Neuronal activity was recorded in the dorsal premotor cortex (PMd) of two monkeys performing a multidirectional, instructed-delay (ID) reaching task in which visuospatial cues signaled the direction of movement either congruent with the instruction cue ("direct-delay" trials, DD) or redirected 180 degrees opposite to the cue ("redirected-delay" trials, RD). Therefore, this task had two degrees of stimulus-response (S-R) compatibility because in one-half of the trials the spatial attributes of the visual cue were incongruent with those of the intended movement. 2. The majority of PMd cells discharged both at short latency to the RD or DD cues and subsequently with sustained activity during the remaining ID period (IDP). The earliest responses (< 250 ms) in both DD and RD trials covaried with cue location and so could be either a "visuospatial" response or a neuronal correlate of the selection of action with highest S-R compatibility, namely move to the stimulus. In contrast, later IDP activity usually covaried with the direction of movement signaled by the cues, independent of their spatial location, supporting the hypothesis that IDP discharge in PMd ultimately encodes attributes of intended reaching movements.


2010 ◽  
Vol 22 (7) ◽  
pp. 1493-1503 ◽  
Author(s):  
Nicole Malfait ◽  
Kenneth F. Valyear ◽  
Jody C. Culham ◽  
Jean-Luc Anton ◽  
Liana E. Brown ◽  
...  

When exposed to novel dynamical conditions (e.g., externally imposed forces), neurologically intact subjects easily adjust motor commands on the basis of their own reaching errors. Subjects can also benefit from visual observation of others' kinematic errors. Here, using fMRI, we scanned subjects watching movies depicting another person learning to reach in a novel dynamic environment created by a robotic device. Passive observation of reaching movements (whether or not they were perturbed by the robot) was associated with increased activation in fronto-parietal regions that are normally recruited in active reaching. We found significant clusters in parieto-occipital cortex, intraparietal sulcus, as well as in dorsal premotor cortex. Moreover, it appeared that part of the network that has been shown to be engaged in processing self-generated reach error is also involved in observing reach errors committed by others. Specifically, activity in left intraparietal sulcus and left dorsal premotor cortex, as well as in right cerebellar cortex, was modulated by the amplitude of observed kinematic errors.


2012 ◽  
Vol 12 (9) ◽  
pp. 609-609
Author(s):  
P. Fattori ◽  
K. Hadjidimitrakis ◽  
R. Breveglieri ◽  
F. Bertozzi ◽  
G. Dal Bo' ◽  
...  

2014 ◽  
Vol 112 (12) ◽  
pp. 3138-3153 ◽  
Author(s):  
Shubhodeep Chakrabarti ◽  
Pablo Martinez-Vazquez ◽  
Alexander Gail

The parietal reach region (PRR) and dorsal premotor cortex (PMd) form part of the fronto-parietal reach network. While neural selectivity profiles of single-cell activity in these areas can be remarkably similar, other data suggest that both areas serve different computational functions in visually guided reaching. Here we test the hypothesis that different neural functional organizations characterized by different neural synchronization patterns might be underlying the putatively different functional roles. We use cross-correlation analysis on single-unit activity (SUA) and multiunit activity (MUA) to determine the prevalence of synchronized neural ensembles within each area. First, we reliably find synchronization in PRR but not in PMd. Second, we demonstrate that synchronization in PRR is present in different cognitive states, including “idle” states prior to task-relevant instructions and without neural tuning. Third, we show that local field potentials (LFPs) in PRR but not PMd are characterized by an increased power and spike field coherence in the beta frequency range (12–30 Hz), further indicating stronger synchrony in PRR compared with PMd. Finally, we show that neurons with similar tuning properties tend to be correlated in their random spike rate fluctuations in PRR but not in PMd. Our data support the idea that PRR and PMd, despite striking similarity in single-cell tuning properties, are characterized by unequal local functional organization, which likely reflects different network architectures to support different functional roles within the fronto-parietal reach network.


1990 ◽  
Vol 80 (2) ◽  
Author(s):  
J.F. Kalaska ◽  
D.A.D. Cohen ◽  
M. Prud'homme ◽  
M.L. Hyde

Sign in / Sign up

Export Citation Format

Share Document