Faculty Opinions recommendation of Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum.

Author(s):  
John Kalaska
1998 ◽  
Vol 80 (3) ◽  
pp. 1132-1150 ◽  
Author(s):  
Driss Boussaoud ◽  
Christophe Jouffrais ◽  
Frank Bremmer

Boussaoud, Driss, Christophe Jouffrais, and Frank Bremmer. Eye position effects on the neuronal activity of dorsal premotor cortex in the macaque monkey. J. Neurophysiol. 80: 1132–1150, 1998. Visual inputs to the brain are mapped in a retinocentric reference frame, but the motor system plans movements in a body-centered frame. This basic observation implies that the brain must transform target coordinates from one reference frame to another. Physiological studies revealed that the posterior parietal cortex may contribute a large part of such a transformation, but the question remains as to whether the premotor areas receive visual information, from the parietal cortex, readily coded in body-centered coordinates. To answer this question, we studied dorsal premotor cortex (PMd) neurons in two monkeys while they performed a conditional visuomotor task and maintained fixation at different gaze angles. Visual stimuli were presented on a video monitor, and the monkeys made limb movements on a panel of three touch pads located at the bottom of the monitor. A trial begins when the monkey puts its hand on the central pad. Then, later in the trial, a colored cue instructed a limb movement to the left touch pad if red or to the right one if green. The cues lasted for a variable delay, the instructed delay period, and their offset served as the go signal. The fixation spot was presented at the center of the screen or at one of four peripheral locations. Because the monkey's head was restrained, peripheral fixations caused a deviation of the eyes within the orbit, but for each fixation angle, the instructional cue was presented at nine locations with constant retinocentric coordinates. After the presentation of the instructional cue, 133 PMd cells displayed a phasic discharge (signal-related activity), 157 were tonically active during the instructed delay period (set-related or preparatory activity), and 104 were active after the go signal in relation to movement (movement-related activity). A large proportion of cells showed variations of the discharge rate in relation to limb movement direction, but only modest proportions were sensitive to the cue's location (signal, 43%; set, 34%; movement, 29%). More importantly, the activity of most neurons (signal, 74%; set, 79%; movement, 79%) varied significantly (analysis of variance, P < 0.05) with orbital eye position. A regression analysis showed that the neuronal activity varied linearly with eye position along the horizontal and vertical axes and can be approximated by a two-dimensional regression plane. These data provide evidence that eye position signals modulate the neuronal activity beyond sensory areas, including those involved in visually guided reaching limb movements. Further, they show that neuronal activity related to movement preparation and execution combines at least two directional parameters: arm movement direction and gaze direction in space. It is suggested that a substantial population of PMd cells codes limb movement direction in a head-centered reference frame.


1994 ◽  
Vol 71 (3) ◽  
pp. 1281-1284 ◽  
Author(s):  
D. J. Crammond ◽  
J. F. Kalaska

1. Neuronal activity was recorded in the dorsal premotor cortex (PMd) of two monkeys performing a multidirectional, instructed-delay (ID) reaching task in which visuospatial cues signaled the direction of movement either congruent with the instruction cue ("direct-delay" trials, DD) or redirected 180 degrees opposite to the cue ("redirected-delay" trials, RD). Therefore, this task had two degrees of stimulus-response (S-R) compatibility because in one-half of the trials the spatial attributes of the visual cue were incongruent with those of the intended movement. 2. The majority of PMd cells discharged both at short latency to the RD or DD cues and subsequently with sustained activity during the remaining ID period (IDP). The earliest responses (< 250 ms) in both DD and RD trials covaried with cue location and so could be either a "visuospatial" response or a neuronal correlate of the selection of action with highest S-R compatibility, namely move to the stimulus. In contrast, later IDP activity usually covaried with the direction of movement signaled by the cues, independent of their spatial location, supporting the hypothesis that IDP discharge in PMd ultimately encodes attributes of intended reaching movements.


1997 ◽  
Vol 78 (5) ◽  
pp. 2413-2426 ◽  
Author(s):  
Stephen H. Scott ◽  
Lauren E. Sergio ◽  
John F. Kalaska

Scott, Stephen H., Lauren E. Sergio, and John F. Kalaska. Reaching movements with similar hand paths but different arm orientations. II. Activity of individual cells in dorsal premotor cortex and parietal area 5. J. Neurophysiol. 78: 2413–2426, 1997. Neuronal activity in primary motor cortex (MI) is altered when monkeys make reaching movements along similar handpaths at shoulder level with two different arm orientations, either in the natural orientation with the elbow positioned below the level of the shoulder and hand or in an abducted orientation with the elbow abducted nearly to shoulder level. The present study examines to what degree two other cortical areas, the dorsal premotor (PMd) and parietal area 5, also show modulation of cell activity related to arm geometry during reaching. The activity of most (89%) of the 207 cells in PMd recorded while monkeys made reaching movements showed a statistically significant change in activity between orientations [analysis of variation (ANOVA), P < 0.01]. A common effect of arm orientation on cell activity was a change in the overall level of discharge either before, during, and/or after movement (67%, ANOVA, task main effect, P < 0.01). Many cells (76%) showed a statistical change in their response to movement direction (ANOVA, task × direction interaction term, P < 0.01), including changes in dynamic range and changes in the preferred direction of cells that were directionally tuned in both arm orientations. Overall, these effects were similar qualitatively but not as strong quantitatively as those observed in MI. A sample of cells was recorded in area 5 of one monkey. Most (95%) of the 79 area 5 cells showed a change in activity when reaching movements were performed using different arm orientations (ANOVA, P < 0.01). As in PMd and MI, many area 5 cells (56, 71%) showed changes in their tonic discharge before, during, and/or after movement, and 70 cells (89%) showed changes in their response to movement direction (ANOVA, task × direction interaction term, P < 0.01). The observed changes in neuronal activity related to posture and movement in MI, PMd and area 5 demonstrate that single-cell activity in these cortical areas is not simply related to the spatial attributes of hand trajectory but is also strongly influenced by attributes of movement related to arm geometry.


2002 ◽  
Vol 88 (4) ◽  
pp. 2167-2171 ◽  
Author(s):  
Tetsuji Ochiai ◽  
Hajime Mushiake ◽  
Jun Tanji

This study examined whether neuronal activity in the dorsal premotor cortex (PMd) covaries with image motion or actual movement of the arm while planning a target-capturing task when the motor task is guided by an image of the moving arm. For this purpose, we trained a monkey to capture a target on a video screen with the part of the arm displayed on the screen. The target-capturing body part was either the right or left side of the hand image. Because the actual arm movement was invisible, the motor task was guided by the arm image, which was at times right-left inverted on the screen. We found that neuronal activity in the PMd predominantly reflected arm-image movement rather than the actual arm movement, and for half of PMd neurons, the activity differed depending on the target-capturing body-part defined in the right or left side of the arm image.


2011 ◽  
Vol 71 ◽  
pp. e250
Author(s):  
Masaya Toyoshima ◽  
Yusuke Shibata ◽  
Kazuhiro Sakamoto ◽  
Naohiro Saito ◽  
Jun Tanji ◽  
...  

2007 ◽  
Vol 578 (2) ◽  
pp. 551-562 ◽  
Author(s):  
Giacomo Koch ◽  
Michele Franca ◽  
Hitoshi Mochizuki ◽  
Barbara Marconi ◽  
Carlo Caltagirone ◽  
...  

2002 ◽  
Vol 88 (2) ◽  
pp. 1064-1072 ◽  
Author(s):  
Paul Cisek ◽  
John F. Kalaska

Recent studies have shown that gaze angle modulates reach-related neural activity in many cortical areas, including the dorsal premotor cortex (PMd), when gaze direction is experimentally controlled by lengthy periods of imposed fixation. We looked for gaze-related modulation in PMd during the brief fixations that occur when a monkey is allowed to look around freely without experimentally imposed gaze control while performing a center-out delayed arm-reaching task. During the course of the instructed-delay period, we found significant effects of gaze angle in 27–51% of PMd cells. However, for 90–95% of cells, these effects accounted for <20% of the observed discharge variance. The effect of gaze was significantly weaker than the effect of reach-related variables. In particular, cell activity during the delay period was more strongly related to the intended movement expressed in arm-related coordinates than in gaze-related coordinates. Under the same experimental conditions, many cells in medial parietal cortex exhibited much stronger gaze-related modulation and expressed intended movement in gaze-related coordinates. In summary, gaze direction-related modulation of cell activity is indeed expressed in PMd during the brief fixations that occur in natural oculomotor behavior, but its overall effect on cell activity is modest.


1997 ◽  
Vol 78 (1) ◽  
pp. 450-460 ◽  
Author(s):  
Peter Svensson ◽  
Satoshi Minoshima ◽  
Ahmad Beydoun ◽  
Thomas J. Morrow ◽  
Kenneth L. Casey

Svensson, Peter, Satoshi Minoshima, Ahmad Beydoun, Thomas J. Morrow, and Kenneth L. Casey. Cerebral processing of acute skin and muscle pain in humans. J. Neurophysiol. 78: 450–460, 1997. The human cerebral processing of noxious input from skin and muscle was compared with the use of positron emission tomography with intravenous H2 15O to detect changes in regional cerebral blood flow (rCBF) as an indicator of neuronal activity. During each of eight scans, 11 normal subjects rated the intensity of stimuli delivered to the nondominant (left) forearm on a scale ranging from 0 to 100 with 70 as pain threshold. Cutaneous pain was produced with a high-energy CO2 laser stimulator. Muscle pain was elicited with high-intensity intramuscular electrical stimulation. The mean ratings of perceived intensity for innocuous and noxious stimulation were32.6 ± 4.5 (SE) and 78.4 ± 1.7 for cutaneous stimulation and 15.4 ± 4.2 and 73.5 ± 1.4 for intramuscular stimulation. The pain intensity ratings and the differences between noxious and innocuous ratings were similar for cutaneous and intramuscular stimuli ( P > 0.05). After stereotactic registration, statistical pixel-by-pixel summation ( Z score) and volumes-of-interest (VOI) analyses of subtraction images were performed. Significant increases in rCBF to both noxious cutaneous and intramuscular stimulation were found in the contralateral secondary somatosensory cortex (SII) and inferior parietal lobule [Brodmann area (BA) 40]. Comparable levels of rCBF increase were found in the contralateral anterior insular cortex, thalamus, and ipsilateral cerebellum. Noxious cutaneous stimulation caused significant activation in the contralateral lateral prefrontal cortex (BA 10/46) and ipsilateral premotor cortex (BA 4/6). Noxious intramuscular stimulation evoked rCBF increases in the contralateral anterior cingulate cortex (BA 24) and subsignificant responses in the contralateral primary sensorimotor cortex (MI/SI) and lenticular nucleus. These activated cerebral structures may represent those recruited early in nociceptive processing because both forms of stimuli were near pain threshold. Correlation analyses showed a negative relationship between changes in rCBF for thalamus and MI/SI for cutaneous stimulation, and positive relationships between thalamus and anterior insula for both stimulus modalities. Direct statistical comparisons between innocuous cutaneous and intramuscular stimulation with the use of Z scores and VOI analyses showed no reliable differences between these two forms of noxious stimulation, indicating a substantial overlap in brain activation pattern. The comparison of noxious cutaneous and intramuscular stimulation indicated more activation in the premotor cortex, SII, and prefrontal cortex with cutaneous stimulation, but these differences did not reach statistical significance. The similar cerebral activation patterns suggest that the perceived differences between acute skin and muscle pain are mediated by differences in the intensity and temporospatial pattern of neuronal activity within similar sets of forebrain structures.


NeuroImage ◽  
2012 ◽  
Vol 62 (1) ◽  
pp. 500-509 ◽  
Author(s):  
Sergiu Groppa ◽  
Nicole Werner-Petroll ◽  
Alexander Münchau ◽  
Günther Deuschl ◽  
Matthew F.S. Ruschworth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document