Development of Spontaneous Synaptic Transmission in the Rat Spinal Cord

1998 ◽  
Vol 79 (5) ◽  
pp. 2277-2287 ◽  
Author(s):  
Bao-Xi Gao ◽  
Gong Cheng ◽  
Lea Ziskind-Conhaim

Gao, Bao-Xi, Gong Cheng, and Lea Ziskind-Conhaim. Development of spontaneous synaptic transmission in the rat spinal cord. J. Neurophysiol. 79: 2277–2287, 1998. Dorsal root afferents form synaptic connections on motoneurons a few days after motoneuron clustering in the rat lumbar spinal cord, but frequent spontaneous synaptic potentials are detected only after birth. To increase our understanding of the mechanisms underlying the differentiation of synaptic transmission, we examined the developmental changes in properties of spontaneous synaptic transmission at early stages of synapse formation. Spontaneous postsynaptic currents (PSCs) and tetrodotoxin (TTX)-resistant miniature PSCs (mPSCs) were measured in spinal motoneurons of embryonic and postnatal rats using whole cell patch-clamp recordings. Spontaneous PSC frequencies were higher than mPSC frequencies in both embryonic and postnatal motoneurons, suggesting that even at embryonic stages, when action-potential firing rate was low, presynaptic action potentials played an important role in triggering spontaneous PSCs. After birth, the twofold increase in spontaneous PSC frequency was attributed to an increase in action-potential–independent quantal release rather than to a higher rate of action-potential firing. In embryonic motoneurons, the fluctuations in peak amplitude of spontaneous PSCs were normally distributed around single peaks with modal values similar to those of mPSCs. These data indicated that early in synapse differentiation spontaneous PSCs were primarily composed of currents generated by quantal release. After birth, mean mPSC amplitude increased by 50% but mean quantal current amplitude did not change. Synchronous, multiquantal release was apparent in postnatal motoneurons only in high-K+ extracellular solution. Comparison of the properties of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) demonstrated that mean mEPSC frequency was higher than mIPSC frequency, suggesting that either excitatory synapses outnumbered inhibitory synapses or that the probability of excitatory transmitter release was higher than the release of inhibitory neurotransmitters. The finding that mIPSC duration was several-fold longer than mEPSC duration implied that despite their lower frequency, inhibitory currents could modulate motoneuron synaptic integration by shunting incoming excitatory inputs for prolonged time intervals.

2011 ◽  
Vol 7 ◽  
pp. 1744-8069-7-67 ◽  
Author(s):  
Michael E Hildebrand ◽  
Janette Mezeyova ◽  
Paula L Smith ◽  
Michael W Salter ◽  
Elizabeth Tringham ◽  
...  

2019 ◽  
Author(s):  
Jessica Abigail Feria Pliego ◽  
Christine M. Pedroarena

ABSTRACTThe Kv1 voltage-gated potassium channels (kv1.1-1.8) display characteristic low-threshold activation ranges what enables their role in regulating diverse aspects of neuronal function, such as the action potential (AP) threshold and waveform, and thereby influence neuronal excitability or synaptic transmission. Kv1 channels are highly expressed in the cerebellar cortex and nuclei and mutations of human Kv1 genes are associated to episodic forms of ataxia (EAT-1). Besides the well-established role of Kv1 channels in regulating the basket-Purkinje cells inhibitory synapses of cerebellar cortex, cerebellar Kv1 channels regulate the principal deep cerebellar nuclear neurons activity (DCNs). DCNs however, include as well different groups of GABAergic cells that project locally to target principal DCNs, or to the inferior-olive or recurrently to the cerebellar cortex, but whether their function is controlled by Kv1 channels remains unclear. Here, using cerebellar slices from the GAD67-GFP line mice to identify putative GABAergic-DCNs and specific Kv1 channel blockers (dendrotoxins-alpha/I/K (DTXs)) we provide evidence that putative GABAergic-DCNs spontaneous and evoked activity is controlled by Kv1 currents. DTXs shifted in the hyperpolarizing direction the voltage threshold of spontaneous APs in GABAergic-DCNs, increased GABAergic-DCNs spontaneous firing rate and decreased these neurons ability to fire repetitively action potentials at high frequency. Moreover, in spontaneously silent putative nucleo-cortical DCNs, DTXs application induced depolarization and tonic firing. These results strongly suggest that Kv1 channels regulate GABAergic-DCNs activity and thereby can control previously unrecognized aspects of cerebellar function.


2004 ◽  
Vol 101 (5) ◽  
pp. 1167-1176 ◽  
Author(s):  
Christian Grasshoff ◽  
Bernd Antkowiak

Background The capacity of general anesthetics to produce immobility is primarily spinally mediated. Recently, compelling evidence has been provided that the spinal actions of propofol involve gamma-aminobutyric acid type A (GABAA) receptors, whereas the contribution of glycine receptors remains uncertain. The relevant molecular targets of the commonly used volatile anesthetic sevoflurane in the spinal cord are largely unknown, but indirect evidence suggests a mechanism of action distinct from propofol. Methods The effects of sevoflurane and propofol on spontaneous action potential firing were investigated by extracellular voltage recordings from ventral horn interneurons in cultured spinal cord tissue slices obtained from embryonic rats (embryonic days 14-15). Results Propofol and sevoflurane reduced spontaneous action potential firing of neurons. Concentrations causing half-maximal effects (0.11 microm propofol, 0.11 mm sevoflurane) were lower than the median effective concentration immobility (1-1.5 microm propofol, 0.35 mm sevoflurane). At higher concentrations, complete inhibition of action potential activity was observed with sevoflurane but not with propofol. Effects of sevoflurane were mediated predominantly by glycine receptors (45%) and GABAA receptors (38%), whereas propofol acted almost exclusively via GABAA receptors (96%). Conclusions The authors' results suggest that glycine and GABAA receptors are the most important molecular targets mediating depressant effects of sevoflurane in the spinal cord. They provide evidence that sevoflurane causes immobility by a mechanism distinct from the actions of the intravenous anesthetic propofol. The finding that propofol acts exclusively via GABAA receptors can explain its limited capacity to depress spinal neurons in the authors' study.


2019 ◽  
Vol 13 ◽  
Author(s):  
Giulia Tomagra ◽  
Federico Picollo ◽  
Alfio Battiato ◽  
Barbara Picconi ◽  
Silvia De Marchis ◽  
...  

2012 ◽  
Vol 108 (9) ◽  
pp. 2568-2580 ◽  
Author(s):  
Alfredo Gonzalez-Sulser ◽  
Jing Wang ◽  
Bridget N. Queenan ◽  
Massimo Avoli ◽  
Stefano Vicini ◽  
...  

Excessive synchronous neuronal activity is a defining feature of epileptic activity. We previously characterized the properties of distinct glutamatergic and GABAergic transmission-dependent synchronous epileptiform discharges in mouse hippocampal slices using the 4-aminopyridine model of epilepsy. In the present study, we sought to identify the specific hippocampal neuronal populations that initiate and underlie these local field potentials (LFPs). A perforated multielectrode array was used to simultaneously record multiunit action potential firing and LFPs during spontaneous epileptiform activity. LFPs had distinct components based on the initiation site, extent of propagation, and pharmacological sensitivity. Individual units, located in different hippocampal subregions, fired action potentials during these LFPs. A specific neuron subgroup generated sustained action potential firing throughout the various components of the LFPs. The activity of this subgroup preceded the LFPs observed in the presence of antagonists of ionotropic glutamatergic synaptic transmission. In the absence of ionotropic glutamatergic and GABAergic transmission, LFPs disappeared, but units with shorter spike duration and high basal firing rates were still active. These spontaneously active units had an increased level of activity during LFPs and consistently preceded all LFPs recorded before blockade of synaptic transmission. Our findings reveal that neuronal subpopulations with interneuron properties are likely responsible for initiating synchronous activity in an in vitro model of epileptiform discharges.


Sign in / Sign up

Export Citation Format

Share Document