scholarly journals Identification of Sodium Channel Isoforms That Mediate Action Potential Firing in Lamina I/II Spinal Cord Neurons

2011 ◽  
Vol 7 ◽  
pp. 1744-8069-7-67 ◽  
Author(s):  
Michael E Hildebrand ◽  
Janette Mezeyova ◽  
Paula L Smith ◽  
Michael W Salter ◽  
Elizabeth Tringham ◽  
...  
2004 ◽  
Vol 101 (5) ◽  
pp. 1167-1176 ◽  
Author(s):  
Christian Grasshoff ◽  
Bernd Antkowiak

Background The capacity of general anesthetics to produce immobility is primarily spinally mediated. Recently, compelling evidence has been provided that the spinal actions of propofol involve gamma-aminobutyric acid type A (GABAA) receptors, whereas the contribution of glycine receptors remains uncertain. The relevant molecular targets of the commonly used volatile anesthetic sevoflurane in the spinal cord are largely unknown, but indirect evidence suggests a mechanism of action distinct from propofol. Methods The effects of sevoflurane and propofol on spontaneous action potential firing were investigated by extracellular voltage recordings from ventral horn interneurons in cultured spinal cord tissue slices obtained from embryonic rats (embryonic days 14-15). Results Propofol and sevoflurane reduced spontaneous action potential firing of neurons. Concentrations causing half-maximal effects (0.11 microm propofol, 0.11 mm sevoflurane) were lower than the median effective concentration immobility (1-1.5 microm propofol, 0.35 mm sevoflurane). At higher concentrations, complete inhibition of action potential activity was observed with sevoflurane but not with propofol. Effects of sevoflurane were mediated predominantly by glycine receptors (45%) and GABAA receptors (38%), whereas propofol acted almost exclusively via GABAA receptors (96%). Conclusions The authors' results suggest that glycine and GABAA receptors are the most important molecular targets mediating depressant effects of sevoflurane in the spinal cord. They provide evidence that sevoflurane causes immobility by a mechanism distinct from the actions of the intravenous anesthetic propofol. The finding that propofol acts exclusively via GABAA receptors can explain its limited capacity to depress spinal neurons in the authors' study.


Author(s):  
Matthew Alsaloum ◽  
Julie I. R. Labau ◽  
Daniel Sosniak ◽  
Peng Zhao ◽  
Rowida Almomani ◽  
...  

Small fiber neuropathy (SFN) is a common condition affecting thinly myelinated Aδ and unmyelinated C fibers, often resulting in excruciating pain and dysautonomia. SFN has been associated with several conditions, but a significant number of cases have no discernible cause. Recent genetic studies have identified potentially pathogenic gain-of-function mutations in several the pore-forming voltage-gated sodium channel α subunits (NaVs) in a subset of patients with SFN, but the auxiliary sodium channel β subunits have been less implicated in the development of the disease. β subunits modulate NaV trafficking and gating, and several mutations have been linked to epilepsy and cardiac dysfunction. Recently, we provided the first evidence for the contribution of a mutation in the β2-subunit to pain in human painful diabetic neuropathy. Here, we provide the first evidence for the involvement of a sodium channel β subunit mutation in the pathogenesis of SFN with no other known causes. We show, through current-clamp analysis, that the newly-identified Y69H variant of the β2 subunit induces neuronal hyperexcitability in dorsal root ganglion neurons, lowering the threshold for action potential firing and allowing for increased repetitive action potential spiking. Underlying the hyperexcitability induced by the β2-Y69H variant, we demonstrate an upregulation in tetrodotoxin-sensitive, but not tetrodotoxin-resistant sodium currents. This provides the first evidence for the involvement of β2 subunits in SFN and strengthens the link between sodium channel β subunits and the development of neuropathic pain in humans.


1998 ◽  
Vol 79 (5) ◽  
pp. 2277-2287 ◽  
Author(s):  
Bao-Xi Gao ◽  
Gong Cheng ◽  
Lea Ziskind-Conhaim

Gao, Bao-Xi, Gong Cheng, and Lea Ziskind-Conhaim. Development of spontaneous synaptic transmission in the rat spinal cord. J. Neurophysiol. 79: 2277–2287, 1998. Dorsal root afferents form synaptic connections on motoneurons a few days after motoneuron clustering in the rat lumbar spinal cord, but frequent spontaneous synaptic potentials are detected only after birth. To increase our understanding of the mechanisms underlying the differentiation of synaptic transmission, we examined the developmental changes in properties of spontaneous synaptic transmission at early stages of synapse formation. Spontaneous postsynaptic currents (PSCs) and tetrodotoxin (TTX)-resistant miniature PSCs (mPSCs) were measured in spinal motoneurons of embryonic and postnatal rats using whole cell patch-clamp recordings. Spontaneous PSC frequencies were higher than mPSC frequencies in both embryonic and postnatal motoneurons, suggesting that even at embryonic stages, when action-potential firing rate was low, presynaptic action potentials played an important role in triggering spontaneous PSCs. After birth, the twofold increase in spontaneous PSC frequency was attributed to an increase in action-potential–independent quantal release rather than to a higher rate of action-potential firing. In embryonic motoneurons, the fluctuations in peak amplitude of spontaneous PSCs were normally distributed around single peaks with modal values similar to those of mPSCs. These data indicated that early in synapse differentiation spontaneous PSCs were primarily composed of currents generated by quantal release. After birth, mean mPSC amplitude increased by 50% but mean quantal current amplitude did not change. Synchronous, multiquantal release was apparent in postnatal motoneurons only in high-K+ extracellular solution. Comparison of the properties of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) demonstrated that mean mEPSC frequency was higher than mIPSC frequency, suggesting that either excitatory synapses outnumbered inhibitory synapses or that the probability of excitatory transmitter release was higher than the release of inhibitory neurotransmitters. The finding that mIPSC duration was several-fold longer than mEPSC duration implied that despite their lower frequency, inhibitory currents could modulate motoneuron synaptic integration by shunting incoming excitatory inputs for prolonged time intervals.


2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


Author(s):  
Vincenzo Crunelli ◽  
Adam C. Errington ◽  
Stuart W. Hughes ◽  
Tibor I. Tóth

During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively in neocortical networks and then transmitted to other brain areas, substantial evidence exists to suggest that the full expression of the slow oscillation in an intact thalamocortical (TC) network requires the balanced interaction of oscillator systems in both the neocortex and thalamus. Within such a scenario, we have previously argued that the powerful low-threshold Ca 2+ potential (LTCP)-mediated burst of action potentials that initiates the UP states in individual TC neurons may be a vital signal for instigating UP states in related cortical areas. To investigate these issues we constructed a computational model of the TC network which encompasses the important known aspects of the slow oscillation that have been garnered from earlier in vivo and in vitro experiments. Using this model we confirm that the overall expression of the slow oscillation is intricately reliant on intact connections between the thalamus and the cortex. In particular, we demonstrate that UP state-related LTCP-mediated bursts in TC neurons are proficient in triggering synchronous UP states in cortical networks, thereby bringing about a synchronous slow oscillation in the whole network. The importance of LTCP-mediated action potential bursts in the slow oscillation is also underlined by the observation that their associated dendritic Ca 2+ signals are the only ones that inform corticothalamic synapses of the TC neuron output, since they, but not those elicited by tonic action potential firing, reach the distal dendritic sites where these synapses are located.


Sign in / Sign up

Export Citation Format

Share Document