Contribution of the Rostral Fastigial Nucleus to the Control of Orienting Gaze Shifts in the Head-Unrestrained Cat

1998 ◽  
Vol 80 (3) ◽  
pp. 1180-1196 ◽  
Author(s):  
Denis Pélisson ◽  
Laurent Goffart ◽  
Alain Guillaume

Pélisson, Denis, Laurent Goffart, and Alain Guillaume. Contribution of the rostral fastigial nucleus to the control of orienting gaze shifts in the head-unrestrained cat. J. Neurophysiol. 80: 1180–1196, 1998. The implication of the caudal part of the fastigial nucleus (cFN) in the control of saccadic shifts of the visual axis is now well established. In contrast a possible involvement of the rostral part of the fastigial nucleus (rFN) remains unknown. In the current study we investigated in the head-unrestrained cat the contribution of the rFN to the control of visually triggered saccadic gaze shifts by measuring the deficits after unilateral muscimol injection in the rFN. A typical gaze dysmetria was observed: gaze saccades directed toward the inactivated side were hypermetric, whereas those with an opposite direction were hypometric. For both movement directions, gaze dysmetria was proportional to target retinal eccentricity and could be described as a modified gain in the translation of visual signals into eye and head motor commands. Correction saccades were triggered when the target remained visible and reduced the gaze fixation error to 2.7 ± 1.3° (mean ± SD) on average. The hypermetria of ipsiversive gaze shifts resulted predominantly from a hypermetric response of the eyes, whereas the hypometria of contraversive gaze shifts resulted from hypometric responses of both eye and head. However, even in this latter case, the eye saccade was more affected than the motion of the head. As a consequence, for both directions of gaze shift the relative contributions of the eye and head to the overall gaze displacement were altered by muscimol injection. This was revealed by a decreased contribution of the head for ipsiversive gaze shifts and an increased head contribution for contraversive movements. These modifications were associated with slight changes in the delay between eye and head movement onsets. Inactivation of the rFN also affected the initiation of eye and head movements. Indeed, the latency of ipsiversive gaze and head movements decreased to 88 and 92% of normal, respectively, whereas the latency of contraversive ones increased to 149 and 145%. The deficits induced by rFN inactivation were then compared with those obtained after muscimol injection in the cFN of the same animals. Several deficits differed according to the site of injection within the fastigial nucleus (tonic orbital eye rotation, hypermetria of ipsiversive gaze shifts and fixation offset, relationship between dysmetria and latency of contraversive gaze shifts, postural deficit). In conclusion, the present study demonstrates that the rFN is involved in the initiation and the control of combined eye-head gaze shifts. In addition our findings support a functional distinction between the rFN and cFN for the control of orienting gaze shifts. This distinction is discussed with respect to the segregated fastigiofugal projections arising from the rFN and cFN.

1995 ◽  
Vol 73 (4) ◽  
pp. 1632-1652 ◽  
Author(s):  
J. O. Phillips ◽  
L. Ling ◽  
A. F. Fuchs ◽  
C. Siebold ◽  
J. J. Plorde

1. We studied horizontal eye and head movements in three monkeys that were trained to direct their gaze (eye position in space) toward jumping targets while their heads were both fixed and free to rotate about a vertical axis. We considered all gaze movements that traveled > or = 80% of the distance to the new visual target. 2. The relative contributions and metrics of eye and head movements to the gaze shift varied considerably from animal to animal and even within animals. Head movements could be initiated early or late and could be large or small. The eye movements of some monkeys showed a consistent decrease in velocity as the head accelerated, whereas others did not. Although all gaze shifts were hypometric, they were more hypometric in some monkeys than in others. Nevertheless, certain features of the gaze shift were identifiable in all monkeys. To identify those we analyzed gaze, eye in head position, and head position, and their velocities at three points in time during the gaze shift: 1) when the eye had completed its initial rotation toward the target, 2) when the initial gaze shift had landed, and 3) when the head movement was finished. 3. For small gaze shifts (< 20 degrees) the initial gaze movement consisted entirely of an eye movement because the head did not move. As gaze shifts became larger, the eye movement contribution saturated at approximately 30 degrees and the head movement contributed increasingly to the initial gaze movement. For the largest gaze shifts, the eye usually began counterrolling or remained stable in the orbit before gaze landed. During the interval between eye and gaze end, the head alone carried gaze to completion. Finally, when the head movement landed, it was almost aimed at the target and the eye had returned to within 10 +/- 7 degrees, mean +/- SD, of straight ahead. Between the end of the gaze shift and the end of the head movement, gaze remained stable in space or a small correction saccade occurred. 4. Gaze movements < 20 degrees landed accurately on target whether the head was fixed or free. For larger target movements, both head-free and head-fixed gaze shifts became increasingly hypometric. Head-free gaze shifts were more accurate, on average, but also more variable. This suggests that gaze is controlled in a different way with the head free. For target amplitudes < 60 degrees, head position was hypometric but the error was rather constant at approximately 10 degrees.(ABSTRACT TRUNCATED AT 400 WORDS)


2011 ◽  
Vol 106 (4) ◽  
pp. 2000-2011 ◽  
Author(s):  
Luis C. Populin ◽  
Abigail Z. Rajala

We have studied eye-head coordination in nonhuman primates with acoustic targets after finding that they are unable to make accurate saccadic eye movements to targets of this type with the head restrained. Three male macaque monkeys with experience in localizing sounds for rewards by pointing their gaze to the perceived location of sources served as subjects. Visual targets were used as controls. The experimental sessions were configured to minimize the chances that the subject would be able to predict the modality of the target as well as its location and time of presentation. The data show that eye and head movements are coordinated differently to generate gaze shifts to acoustic targets. Chiefly, the head invariably started to move before the eye and contributed more to the gaze shift. These differences were more striking for gaze shifts of <20–25° in amplitude, to which the head contributes very little or not at all when the target is visual. Thus acoustic and visual targets trigger gaze shifts with different eye-head coordination. This, coupled to the fact that anatomic evidence involves the superior colliculus as the link between auditory spatial processing and the motor system, suggests that separate signals are likely generated within this midbrain structure.


2007 ◽  
Vol 98 (1) ◽  
pp. 360-373 ◽  
Author(s):  
Neeraj J. Gandhi ◽  
David L. Sparks

Natural movements often include actions integrated across multiple effectors. Coordinated eye-head movements are driven by a command to shift the line of sight by a desired displacement vector. Yet because extraocular and neck motoneurons are separate entities, the gaze shift command must be separated into independent signals for eye and head movement control. We report that this separation occurs, at least partially, at or before the level of pontine omnipause neurons (OPNs). Stimulation of the OPNs prior to and during gaze shifts temporally decoupled the eye and head components by inhibiting gaze and eye saccades. In contrast, head movements were consistently initiated before gaze onset, and ongoing head movements continued along their trajectories, albeit with some characteristic modulations. After stimulation offset, a gaze shift composed of an eye saccade, and a reaccelerated head movement was produced to preserve gaze accuracy. We conclude that signals subject to OPN inhibition produce the eye-movement component of a coordinated eye-head gaze shift and are not the only signals involved in the generation of the head component of the gaze shift.


1993 ◽  
Vol 70 (6) ◽  
pp. 2678-2683 ◽  
Author(s):  
K. E. Cullen ◽  
D. Guitton ◽  
C. G. Rey ◽  
W. Jiang

1. Previous studies in the cat have demonstrated that output neurons of the superior collicular as well as brain stem omnipause neurons have discharges that are best correlated, not with the trajectory of the eye in the head but, with the trajectory of the visual axis in space (gaze = eye-in-head + head-in-space) during rapid orienting coordinated eye and head movements. In this study, we describe the gaze-related activity of cat premotor “inhibitory burst neurons”(IBNs) identified on the basis of their position relative to the abducens nucleus. 2. The firing behavior of IBNs was studied during 1) saccades made with the head stationary, 2) active orienting combined eye-head gaze shifts, and 3) passive movements of the head on the body. IBN discharges were well correlated with the duration and amplitude of saccades made when the head was stationary. In both head-free paradigms, the behavior of cat IBNs differed from that of previously described primate “saccade bursters”. The duration of their burst was better correlated with gaze than saccade duration, and the total number of spikes in a burst was well correlated with gaze amplitude and generally poorly correlated with saccade amplitude. The behavior of cat IBNs also differed from that of previously described primate “gaze bursters”. The slope of the relationship between the total number of spikes and gaze amplitude observed during head-free gaze shifts was significantly lower than that observed during head-fixed saccades. 3. These studies suggest that cat IBNs do not fit into the categories of gaze-bursters or saccade-bursters that have been described in primate studies.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 64 (2) ◽  
pp. 509-531 ◽  
Author(s):  
D. Guitton ◽  
D. P. Munoz ◽  
H. L. Galiana

1. Orienting movements, consisting of coordinated eye and head displacements, direct the visual axis to the source of a sensory stimulus. A recent hypothesis suggests that the CNS may control gaze position (gaze = eye-relative-to-space = eye-relative-to-head + head-relative-to-space) by the use of a feedback circuit wherein an internally derived representation of gaze motor error drives both eye and head premotor circuits. In this paper we examine the effect of behavioral task on the individual and summed trajectories of horizontal eye- and head-orienting movements to gain more insight into how the eyes and head are coupled and controlled in different behavioral situations. 2. Cats whose heads were either restrained (head-fixed) or unrestrained (head-free) were trained to make orienting movements of any desired amplitude in a simple cat-and-mouse game we call the barrier paradigm. A rectangular opaque barrier was placed in front of the hungry animal who either oriented to a food target that was visible to one side of the barrier or oriented to a location on an edge of the barrier where it predicted the target would reappear from behind the barrier. 3. The dynamics (e.g., maximum velocity) and duration of eye- and head-orienting movements were affected by the task. Saccadic eye movements (head-fixed) elicited by the visible target attained greater velocity and had shorter durations than comparable amplitude saccades directed toward the predicted target. A similar observation has been made in human and monkey. In addition, when the head was unrestrained both the eye and head movements (and therefore gaze movements) were faster and shorter in the visible- compared with the predicted-target conditions. Nevertheless, the relative contributions of the eye and head to the overall gaze displacement remained task independent: i.e., the distance traveled by the eye and head movements was determined by the size of the gaze shift only. This relationship was maintained because the velocities of the eye and head movements covaried in the different behavioral situations. Gaze-velocity profiles also had characteristic shapes that were dependent on task. In the predicted-target condition these profiles tended to have flattened peaks, whereas when the target was visible the peaks were sharper. 4. Presentation of a visual cue (e.g., reappearance of food target) immediately before (less than 50 ms) the onset of a gaze shift to a predicted target triggered a midflight increase in first the eye- and, after approximately 20 ms, the head-movement velocity.(ABSTRACT TRUNCATED AT 400 WORDS)


1984 ◽  
Vol 52 (6) ◽  
pp. 1030-1050 ◽  
Author(s):  
D. Guitton ◽  
R. M. Douglas ◽  
M. Volle

Gaze is the position of the visual axis in space and is the sum of the eye movement relative to the head plus head movement relative to space. In monkeys, a gaze shift is programmed with a single saccade that will, by itself, take the eye to a target, irrespective of whether the head moves. If the head turns simultaneously, the saccade is correctly reduced in size (to prevent gaze overshoot) by the vestibuloocular reflex (VOR). Cats have an oculomotor range (OMR) of only about +/- 25 degrees, but their field of view extends to about +/- 70 degrees. The use of the monkey's motor strategy to acquire targets lying beyond +/- 25 degrees requires the programming of saccades that cannot be physically made. We have studied, in cats, rapid horizontal gaze shifts to visual targets within and beyond the OMR. Heads were either totally unrestrained or attached to an apparatus that permitted short unexpected perturbations of the head trajectory. Qualitatively, similar rapid gaze shifts of all sizes up to at least 70 degrees could be accomplished with the classic single-eye saccade and a saccade-like head movement. For gaze shifts greater than 30 degrees, this classic pattern frequently was not observed, and gaze shifts were accomplished with a series of rapid eye movements whose time separation decreased, frequently until they blended into each other, as head velocity increased. Between discrete rapid eye movements, gaze continued in constant velocity ramps, controlled by signals added to the VOR-induced compensatory phase that followed a saccade. When the head was braked just prior to its onset in a 10 degrees gaze shift, the eye attained the target. This motor strategy is the same as that reported for monkeys. However, for larger target eccentricities (e.g., 50 degrees), the gaze shift was interrupted by the brake and the average saccade amplitude was 12-15 degrees, well short of the target and the OMR. Gaze shifts were completed by vestibularly driven eye movements when the head was released. Braking the head during either quick phases driven by passive head displacements or visually triggered saccades resulted in an acceleration of the eye, thereby implying interaction between the VOR and these rapid-eye-movement signals. Head movements possessed a characteristic but task-dependent relationship between maximum velocity and amplitude. Head movements terminated with the head on target. The eye saccade usually lagged the head displacement.(ABSTRACT TRUNCATED AT 400 WORDS)


2007 ◽  
Vol 98 (2) ◽  
pp. 696-709 ◽  
Author(s):  
A. G. Constantin ◽  
H. Wang ◽  
J. C. Martinez-Trujillo ◽  
J. D. Crawford

Previous studies suggest that stimulation of lateral intraparietal cortex (LIP) evokes saccadic eye movements toward eye- or head-fixed goals, whereas most single-unit studies suggest that LIP uses an eye-fixed frame with eye-position modulations. The goal of our study was to determine the reference frame for gaze shifts evoked during LIP stimulation in head-unrestrained monkeys. Two macaques ( M1 and M2) were implanted with recording chambers over the right intraparietal sulcus and with search coils for recording three-dimensional eye and head movements. The LIP region was microstimulated using pulse trains of 300 Hz, 100–150 μA, and 200 ms. Eighty-five putative LIP sites in M1 and 194 putative sites in M2 were used in our quantitative analysis throughout this study. Average amplitude of the stimulation-evoked gaze shifts was 8.67° for M1 and 7.97° for M2 with very small head movements. When these gaze-shift trajectories were rotated into three coordinate frames (eye, head, and body), gaze endpoint distribution for all sites was most convergent to a common point when plotted in eye coordinates. Across all sites, the eye-centered model provided a significantly better fit compared with the head, body, or fixed-vector models (where the latter model signifies no modulation of the gaze trajectory as a function of initial gaze position). Moreover, the probability of evoking a gaze shift from any one particular position was modulated by the current gaze direction (independent of saccade direction). These results provide causal evidence that the motor commands from LIP encode gaze command in eye-fixed coordinates but are also subtly modulated by initial gaze position.


1999 ◽  
Vol 81 (3) ◽  
pp. 1284-1295 ◽  
Author(s):  
James O. Phillips ◽  
Leo Ling ◽  
Albert F. Fuchs

Action of the brain stem saccade generator during horizontal gaze shifts. I. Discharge patterns of omnidirectional pause neurons. Omnidirectional pause neurons (OPNs) pause for the duration of a saccade in all directions because they are part of the neural mechanism that controls saccade duration. In the natural situation, however, large saccades are accompanied by head movements to produce rapid gaze shifts. To determine whether OPNs are part of the mechanism that controls the whole gaze shift rather than the eye saccade alone, we monitored the activity of 44 OPNs that paused for rightward and leftward gaze shifts but otherwise discharged at relatively constant average rates. Pause duration was well correlated with the duration of either eye or gaze movement but poorly correlated with the duration of head movement. The time of pause onset was aligned tightly with the onset of either eye or gaze movement but only loosely aligned with the onset of head movement. These data suggest that the OPN pause does not encode the duration of head movement. Further, the end of the OPN pause was often better aligned with the end of the eye movement than with the end of the gaze movement for individual gaze shifts. For most gaze shifts, the eye component ended with an immediate counterrotation owing to the vestibuloocular reflex (VOR), and gaze ended at variable times thereafter. In those gaze shifts where eye counterrotation was delayed, the end of the pause also was delayed. Taken together, these data suggest that the end of the pause influences the onset of eye counterrotation, not the end of the gaze shift. We suggest that OPN neurons act to control only that portion of the gaze movement that is commanded by the eye burst generator. This command is expressed by driving the saccadic eye movement directly and also by suppressing VOR eye counterrotation. Because gaze end is less well correlated with pause end and often occurs well after counterrotation onset, we conclude that elements of the burst generator typically are not active till gaze end, and that gaze end is determined by another mechanism independent of the OPNs.


2008 ◽  
Vol 99 (5) ◽  
pp. 2479-2495 ◽  
Author(s):  
Mark M. G. Walton ◽  
Bernard Bechara ◽  
Neeraj J. Gandhi

Because of limitations in the oculomotor range, many gaze shifts must be accomplished using coordinated movements of the eyes and head. Stimulation and recording data have implicated the primate superior colliculus (SC) in the control of these gaze shifts. The precise role of this structure in head movement control, however, is not known. The present study uses reversible inactivation to gain insight into the role of this structure in the control of head movements, including those that accompany gaze shifts and those that occur in the absence of a change in gaze. Forty-five lidocaine injections were made in two monkeys that had been trained on a series of behavioral tasks that dissociate movements of the eyes and head. Reversible inactivation resulted in clear impairments in the animals’ ability to perform gaze shifts, manifested by increased reaction times, lower peak velocities, and increased durations. In contrast, comparable effects were not found for head movements (with or without gaze shifts) with the exception of a very small increase in reaction times of head movements associated with gaze shifts. Eye-head coordination was clearly affected by the injections with gaze onset occurring relatively later with respect to head onset. Following the injections, the head contributed slightly more to the gaze shift. These results suggest that head movements (with and without gaze shifts) can be controlled by pathways that do not involve SC.


2009 ◽  
Vol 102 (1) ◽  
pp. 320-336 ◽  
Author(s):  
Julie Quinet ◽  
Laurent Goffart

It has been shown that inactivation of the caudal fastigial nucleus (cFN) by local injection of muscimol leads to inaccurate gaze shifts in the head-unrestrained monkey and that the gaze dysmetria is primarily due to changes in the horizontal amplitude of eye saccades in the orbit. Moreover, changes in the relationship between amplitude and duration are observed for only the eye saccades and not for the head movements. These results suggest that the cFN output primarily influences a neural network involved in moving the eyes in the orbit. The present study further tested this hypothesis by examining whether head movements could be evoked by electrical microstimulation of the saccade-related region in the cFN. Long stimulation trains (200–300 ms) evoked staircase gaze shifts that were ipsi- or contralateral, depending on the stimulated site. These gaze shifts were small in amplitude and were essentially accomplished by saccadic movements of the eyes. Head movements were observed in some sites but their amplitudes were very small (mean = 2.4°). The occurrence of head movements and their amplitude were not enhanced by increasing stimulation frequency or intensity. In several cases, electrically evoked gaze shifts exhibited an eye-head coupling that was different from that observed in visually triggered gaze shifts. This study provides additional observations suggesting that the saccade-related region in the cFN modulates the generation of eye movements and that the deep cerebellar output region involved in influencing head movements is located elsewhere.


Sign in / Sign up

Export Citation Format

Share Document