scholarly journals Cholinergic Agonist Carbachol Enables Associative Long-Term Potentiation in Piriform Cortex Slices

1998 ◽  
Vol 80 (5) ◽  
pp. 2467-2474 ◽  
Author(s):  
Madhvi M. Patil ◽  
Christiane Linster ◽  
Eugene Lubenov ◽  
Michael E. Hasselmo

Patil, Madhvi M., Christiane Linster, Eugene Lubenov, and Michael E. Hasselmo. Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. J. Neurophysiol. 80: 2467–2474, 1998. Pyramidal cells in piriform (olfactory) cortex receive afferent input from the olfactory bulb as well as intrinsic association input from piriform cortex and other cortical areas. These two functionally distinct inputs terminate on adjacent apical dendritic segments of the pyramidal cells located in layer Ia and layer Ib of piriform cortex. Studies with bath-applied cholinergic agonists have shown suppression of the fast component of the inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of the association fibers. It was previously demonstrated that an associative form of LTP can be induced by coactivation of the two fiber systems after blockade of the fast, γ-aminobutyric acid-A–mediated IPSP. In this report, we demonstrate that an associative form of long-term potentiation can be induced by coactivation of afferent and intrinsic fibers in the presence of the cholinergic agonist carbachol.

Nature ◽  
1987 ◽  
Vol 328 (6129) ◽  
pp. 426-429 ◽  
Author(s):  
G.-Y. Hu ◽  
Ø. Hvalby ◽  
S. I. Walaas ◽  
K. A. Albert ◽  
P. Skjeflo ◽  
...  

1999 ◽  
Vol 81 (2) ◽  
pp. 781-787 ◽  
Author(s):  
Shao-Nian Yang ◽  
Yun-Gui Tang ◽  
Robert S. Zucker

Selective Induction of LTP and LTD by Postsynaptic [Ca2+]i Elevation. Long-term potentiation (LTP) and long-term depression (LTD), two prominent forms of synaptic plasticity at glutamatergic afferents to CA1 hippocampal pyramidal cells, are both triggered by the elevation of postsynaptic intracellular calcium concentration ([Ca2+]i). To understand how one signaling molecule can be responsible for triggering two opposing forms of synaptic modulation, different postsynaptic [Ca2+]i elevation patterns were generated by a new caged calcium compound nitrophenyl-ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid in CA1 pyramidal cells. We found that specific patterns of [Ca2+]i elevation selectively activate LTP or LTD. In particular, only LTP was triggered by a brief increase of [Ca2+]i with relatively high magnitude, which mimics the [Ca2+]i rise during electrical stimulation typically used to induce LTP. In contrast, a prolonged modest rise of [Ca2+]i reliably induced LTD. An important implication of the results is that both the amplitude and the duration of an intracellular chemical signal can carry significant biological information.


1997 ◽  
Vol 78 (5) ◽  
pp. 2531-2545 ◽  
Author(s):  
A. Kapur ◽  
R. A. Pearce ◽  
W. W. Lytton ◽  
L. B. Haberly

Kapur, A., R. A. Pearce, W. W. Lytton, and L. B. Haberly.GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. J. Neurophysiol. 78: 2531–2545, 1997. A recent study in piriform (olfactory) cortex provided evidence that, as in hippocampus and neocortex, γ-aminobutyric acid-A (GABAA)-mediated inhibition is generated in dendrites of pyramidal cells, not just in the somatic region as previously believed. This study examines selected properties of GABAA inhibitory postsynaptic currents (IPSCs) in dendritic and somatic regions that could provide insight into their functional roles. Pharmacologically isolated GABAA-mediated IPSCs were studied by whole cell patch recording in slices. To compare properties of IPSCs in distal dendritic and somatic regions, local stimulation was carried out with tungsten microelectrodes, and spatially restricted blockade of GABAA-mediated inhibition was achieved by pressure-ejection of bicuculline from micropipettes. The results revealed that largely independent circuits generate GABAA inhibition in distal apical dendritic and somatic regions. With such independence, a selective decrease in dendritic-region inhibition could enhance integrative or plastic processes in dendrites while allowing feedback inhibition in the somatic region to restrain system excitability. This could allow modulatory fiber systems from the basal forebrain or brain stem, for example, to change the functional state of the cortex by altering the excitability of interneurons that mediate dendritic inhibition without increasing the propensity for regenerative bursting in this highly epileptogenic system. As in hippocampus, GABAA-mediated IPSCs were found to have fast and slow components with time constants of decay on the order of 10 and 40 ms, respectively, at 29°C. Modeling analysis supported physiological evidence that the slow time constant represents a true IPSC component rather than an artifactual slowing of the fast component from voltage clamp of a dendritic current. The results indicated that, whereas both dendritic and somatic-region IPSCs have both fast and slow GABAA components, there is a greater proportion of the slow component in dendrites. In a companion paper, the hypothesis is explored that the resulting slower time course of the dendritic IPSC increases its capacity to regulate the N-methyl-d-aspartate component of EPSPs. Finally, evidence is presented that the slow GABAA-mediated IPSC component is regulated by presynaptic GABAB inhibition whereas the fast is not. Based on the requirement for presynaptic GABAB-mediated block of inhibition for expression of long-term potentiation, this finding is consistent with participation of the slow GABAA component in regulation of synaptic plasticity. The lack of susceptibility of the fast GABAA component to the long-lasting, activity-induced suppression mediated by presynaptic GABAB receptors is consistent with a protective role for this process in preventing seizure activity.


2009 ◽  
Vol 29 (43) ◽  
pp. 13649-13661 ◽  
Author(s):  
F. W. Johenning ◽  
P. S. Beed ◽  
T. Trimbuch ◽  
M. H. K. Bendels ◽  
J. Winterer ◽  
...  

1995 ◽  
Vol 74 (3) ◽  
pp. 1075-1082 ◽  
Author(s):  
D. K. Selig ◽  
H. K. Lee ◽  
M. F. Bear ◽  
R. C. Malenka

1. We examined the effects of the metabotropic glutamate receptor (mGluR) antagonist alpha-methyl-4-carboxyphenylglycine (MCPG) on the induction of long-term potentiation (LTP) long-term depression (LTD), and depotentiation in CA1 hippocampal neurons using extracellular recording techniques. 2. MCPG (500 microM) strongly antagonized the presynaptic inhibitory action of the mGluR agonist 1-aminocyclopentane-(1S,3R)-dicarboxylic acid yet failed to block LTP induced with either tetanic stimulation (100 Hz, 1 s) or theta-burst stimulation. 3. To test the possibility that our failure to block LTP was due to prior activation of a "molecular switch" that in its "on" state obviates the need for mGluR activation to generate LTP, we gave repeated periods of prolonged low-frequency stimulation (LFS; 1 Hz, 10 min), a manipulation reported to turn the switch "off." Although this stimulation saturated LTD, subsequent application of MCPG still failed to block LTP. 4. MCPG did not block LFS-induced depotentiation in older slices (4-6 wk) or LFS-induced LTD in older, young (11-18 days), or neonatal (3-7 days) slices. 5. These results demonstrate that MCPG-sensitive mGluRs are not necessary for the induction of LTP, LTD, or depotentiation in hippocampal CA1 pyramidal cells. The possibility remains, however, that their activation may modify the threshold for the induction of these long-term plastic changes.


2017 ◽  
Vol 95 (9) ◽  
pp. 1058-1063 ◽  
Author(s):  
Fatima C. Bastos ◽  
Vanessa N. Corceiro ◽  
Sandra A. Lopes ◽  
José G. de Almeida ◽  
Carlos M. Matias ◽  
...  

The application of tetraethylammonium (TEA), a blocker of voltage-dependent potassium channels, can induce long-term potentiation (LTP) in the synaptic systems CA3–CA1 and mossy fiber-CA3 pyramidal cells of the hippocampus. In the mossy fibers, the depolarization evoked by extracellular TEA induces a large amount of glutamate and also of zinc release. It is considered that zinc has a neuromodulatory role at the mossy fiber synapses, which can, at least in part, be due to the activation of presynaptic ATP-dependent potassium (KATP) channels. The aim of this work was to study properties of TEA-induced zinc signals, detected at the mossy fiber region, using the permeant form of the zinc indicator Newport Green. The application of TEA caused a depression of those signals that was partially blocked by the KATP channel inhibitor tolbutamide. After the removal of TEA, the signals usually increased to a level above baseline. These results are in agreement with the idea that intense zinc release during strong synaptic events triggers a negative feedback action. The zinc depression, caused by the LTP-evoking chemical stimulation, turns into potentiation after TEA washout, suggesting the existence of a correspondence between the observed zinc potentiation and TEA-evoked mossy fiber LTP.


Sign in / Sign up

Export Citation Format

Share Document