Nitric Oxide–Mediated Spinal Disinhibition Contributes to the Sensitization of Primate Spinothalamic Tract Neurons

1999 ◽  
Vol 81 (3) ◽  
pp. 1086-1094 ◽  
Author(s):  
Qing Lin ◽  
Jing Wu ◽  
Yuan Bo Peng ◽  
Minglei Cui ◽  
William D. Willis

Nitric oxide–mediated spinal disinhibition contributes to the sensitization of primate spinothalamic tract neurons. This study concentrated on whether an increase in spinal nitric oxide (NO) diminishes inhibition of spinothalamic tract (STT) cells induced by activating the periaqueductal gray (PAG) or spinal glycinergic and GABAergic receptors, thus contributing to the sensitization of STT neurons. A reduction in inhibition of the responses to cutaneous mechanical stimuli induced by PAG stimulation was seen in wide dynamic range (WDR) STT cells located in the deep layers of the dorsal horn when these neurons were sensitized during administration of a NO donor, 3-morpholinosydnonimine (SIN-1), into the dorsal horn by microdialysis. In contrast, PAG-induced inhibition of the responses of high-threshold (HT) and superficial WDR STT cells was not significantly changed by spinal infusion of SIN-1. A reduction in PAG inhibition when STT cells were sensitized after intradermal injection of capsaicin could be nearly completely blocked by pretreatment of the dorsal horn with a NO synthase inhibitor, 7-nitroindazole. Moreover, spinal inhibition of nociceptive activity of deep WDR STT neurons elicited by iontophoretic release of glycine and GABA agonists was attenuated by administration of SIN-1. This change paralleled the change in PAG-induced inhibition. However, the inhibition of HT and superficial WDR cells induced by glycine and GABA release did not show a significant change when SIN-1 was administered spinally. Combined with our recent results, these data show that the effectiveness of spinal inhibition can be reduced by the NO/cGMP pathway. Thus disinhibition may constitute one mechanism underlying central sensitization.

1999 ◽  
Vol 81 (3) ◽  
pp. 1075-1085 ◽  
Author(s):  
Qing Lin ◽  
Jiri Palec̆ek ◽  
Veronika Palec̆ková ◽  
Yuan Bo Peng ◽  
Jing Wu ◽  
...  

Nitric oxide mediates the central sensitization of primate spinothalamic tract neurons. Nitric oxide (NO) has been proposed to contribute to the development of hyperalgesia by activating the NO/guanosine 3′,5′-cyclic monophosphate (cGMP) signal transduction pathway in the spinal cord. We have examined the effects of NO on the responses of primate spinothalamic tract (STT) neurons to peripheral cutaneous stimuli and on the sensitization of STT cells following intradermal injection of capsaicin. The NO level within the spinal dorsal horn was increased by microdialysis of a NO donor, 3-morpholinosydnonimine (SIN-1). SIN-1 enhanced the responses of STT cells to both weak and strong mechanical stimulation of the skin. This effect was preferentially on deep wide dynamic range STT neurons. The responses of none of the neurons tested to noxious heat stimuli were significantly changed when SIN-1 was administered. Intradermal injection of capsaicin increased dramatically the content of NO metabolites, [Formula: see text] within the dorsal horn. This effect was attenuated by pretreatment of the spinal cord with a nitric oxide synthase (NOS) inhibitor, NG-nitro-l-arginine methyl ester (l-NAME). Sensitization of STT cells induced by intradermal injection of capsaicin was also prevented by pretreatment of the dorsal horn with the NOS inhibitors, l-NAME or 7-nitroindazole. Blockade of NOS did not significantly affect the responses of STT cells to peripheral stimulation in the absence of capsaicin injection. The data suggest that NO contributes to the development and maintenance of central sensitization of STT cells and the resultant mechanical hyperalgesia and allodynia after peripheral tissue damage or inflammation. NO seems to play little role in signaling peripheral stimuli under physiological conditions.


2004 ◽  
Vol 91 (1) ◽  
pp. 213-222 ◽  
Author(s):  
Donald A. Simone ◽  
Xijing Zhang ◽  
Jun Li ◽  
Jun-Ming Zhang ◽  
Christopher N. Honda ◽  
...  

We investigated the role of mechanosensitive spinothalamic tract (STT) neurons in mediating 1) the itch evoked by intradermal injection of histamine, 2) the enhanced sense of itch evoked by innocuous stroking (alloknesis), and 3) the enhanced pain evoked by punctate stimulation (hyperalgesia) of the skin surrounding the injection site. Responses to intradermal injections of histamine and capsaicin were compared in STT neurons recorded in either the superficial or the deep dorsal horn of the anesthetized monkey. Each neuron was identified by antidromic activation from the ventral posterior lateral nucleus of thalamus and classified by its initial responses to mechanical stimuli as wide dynamic range (WDR) or high-threshold (HT). Approximately half of the WDRs and one of the HTs responded weakly to histamine, some with a duration > 5 min, the maximal time allotted. WDRs but not HTs exhibited a significant increase in response to punctate stimulation after histamine consistent with their possible role in mediating histamine-induced hyperalgesia. Neither type of neuron exhibited significant changes in response to stroking, consistent with their unlikely role in mediating alloknesis. Furthermore, nearly all STT neurons exhibited vigorous and persistent responses to capsaicin, after which they became sensitized to stroking and to punctate stimulation. We conclude that the STT neurons in our sample are more likely to contribute to pain, allodynia, and hyperalgesia than to itch and alloknesis.


1994 ◽  
Vol 71 (3) ◽  
pp. 981-1002 ◽  
Author(s):  
R. J. Dado ◽  
J. T. Katter ◽  
G. J. Giesler

1. The goal of this study was to gather data that would increase our understanding of nociceptive processing by spinothalamic tract (STT) neurons that receive inputs from the hand and arm. Fifty neurons in the cervical enlargement of urethan-anesthetized rats were antidromically activated from the contralateral posterior thalamus. A stimulating electrode was moved systematically within an anterior-posterior plane in the thalamus until a point was located where the smallest amount of current antidromically activated the neuron. The antidromic thresholds at each of these lowest threshold points was < or = 30 microA; the mean antidromic threshold was 15.4 +/- 1.0 (SE) microA. Lowest threshold points were found primarily in the posterior thalamic group (Po), zona incerta, and in or near the supraoptic decussation. 2. The recording sites of 47 neurons were marked and recovered. Recording sites were located in the superficial dorsal horn (SDH, n = 15), deep dorsal horn (DDH, n = 31), and ventral horn (n = 1). Recording sites were located across the mediolateral extent of the SDH. Within the DDH, recording sites were concentrated laterally in nucleus proprius and dorsally in the lateral reticulated area. The locations of the recording points confirm previous anatomic descriptions of STT neurons in the cervical enlargement. 3. Cutaneous excitatory receptive fields were restricted to the ipsilateral forepaw or forelimb in 67% (10/15) of the neurons recorded in the SDH and 42% (13/31) of the neurons recorded in the DDH. Neurons having larger, more complex receptive fields were also commonly encountered. Thirty-three percent (5/15) of the neurons recorded in the SDH and 58% (18/31) recorded in the DDH had receptive fields that were often discontinuous and included areas of the ipsilateral shoulder, thorax, and head, including the face. 4. Innocuous and noxious mechanical stimuli were applied to the receptive field of each neuron. Fifty percent (25/50) responded to innocuous mechanical stimuli but responded at higher frequencies to noxious stimuli (wide dynamic range, WDR). Forty-four percent (22/50) responded only to noxious stimuli (high threshold, HT). Six percent (3/50) responded preferentially to innocuous stimuli (low threshold, LT). WDR and HT neurons were recorded in both the SDH and DDH, including nucleus proprius, an area not typically associated with nociceptive transmission at other levels of the cord. Sixty percent (9/15) of the units recorded in the SDH were classified as WDR neurons; the other 40% (6/15) were classified HT. Forty-eight percent (15/31) of the units recorded in the DDH were classified as WDR neurons and 42% (13/31) as HT.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 72 (6) ◽  
pp. 2590-2597 ◽  
Author(s):  
J. W. Leem ◽  
B. H. Lee ◽  
W. D. Willis ◽  
J. M. Chung

1. A set of 11 cutaneous stimuli defined previously to differentiate among different types of cutaneous sensory receptors in the rat hindpaw was also effective in differentially activating second-order sensory neurons in the dorsal horn and the gracile nucleus of rats. 2. All sampled units were responsive to more than 1 of the 11 stimuli. However, none responded to innocuous warming or cooling stimuli. Therefore further analysis was restricted to responses to nine of the selected stimuli. 3. Cluster analysis of the responses to nine selected innocuous and noxious mechanical stimuli and noxious thermal stimuli yielded seven classes that seemed functionally distinct from each other: a class of high-threshold neurons, three classes of convergent (wide dynamic range) neurons, a class of a mixture of poorly responsive neurons and neurons receiving Pacinian inputs, and two classes of low-threshold neurons. 4. High-threshold neurons responded predominantly to noxious mechanical and thermal stimuli and presumably received an input from both mechanically and thermally sensitive nociceptors. These cells were located in the dorsal horn, and some were spinothalamic tract cells. Wide dynamic range neurons were excited by innocuous and noxious stimuli, but better by noxious stimuli. These classes of cells were either in the dorsal horn (some were spinothalamic tract cells) or in the nucleus gracilis.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 90 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Yuan Bo Peng ◽  
Qing Dong Ling ◽  
M. A. Ruda ◽  
Daniel R. Kenshalo

Neonatal peripheral inflammation has been shown to produce profound anatomical changes in the dorsal horn of adult rats. In this study, we explored whether parallel physiological changes exist. Neonatal rats were injected with complete Freund's adjuvant (CFA) into the left hind paw. At 8–10 wk of age, single dorsal horn neurons were recorded in response to graded intensities of mechanical stimuli delivered to the receptive field. In addition, cord dorsum potentials, produced by electrical stimuli delivered to the left sciatic nerve at 2.5× threshold, were recorded bilaterally from L2 to S3. There were significant increases in background activity and responses to brush and pinch in neonatal rats that were treated with CFA, as compared with control rats. Further analysis showed similar significant changes when dorsal horn neurons were categorized into wide dynamic range (WDR), high-threshold (HT), and low-threshold (LT) groups. The receptive field was significantly larger in neonatally treated rats as compared with control rats. Additionally, there was a significant increase in the response to a 49°C heat stimulus in neonatally treated rats as compared with control rats. There was also a trend for the amplitudes of N1, N2, and P waves of the cord dorsum potential to increase and latencies to decrease in neonatally treated rats, but no significant differences were detected between different levels of the spinal cord (L2 to S3). These data further support the notion that anatomical and physiological plasticity changes occurred in the spinal cord following early neonatal CFA treatment.


2000 ◽  
Vol 84 (3) ◽  
pp. 1180-1185 ◽  
Author(s):  
Xijing Zhang ◽  
Christopher N. Honda ◽  
Glenn J. Giesler

Percutaneous upper cervical cordotomy continues to be performed on patients suffering from several types of severe chronic pain. It is believed that the operation is effective because it cuts the spinothalamic tract (STT), a primary pathway carrying nociceptive information from the spinal cord to the brain in humans. In recent years, there has been controversy regarding the location of STT axons within the spinal cord. The aim of this study was to determine the locations of STT axons within the spinal cord white matter of C2 segment in monkeys using methods of antidromic activation. Twenty lumbar STT cells were isolated. Eleven were classified as wide dynamic range neurons, six as high-threshold cells, and three as low-threshold cells. Eleven STT neurons were recorded in the deep dorsal horn and nine in superficial dorsal horn. The axons of the examined neurons were located at antidromic low-threshold points (<30 μA) within the contralateral lateral funiculus of C2. All low-threshold points were located ventral to the denticulate ligament, within the lateral half of the ventral lateral funiculus (VLF). None were found in the dorsal half of the lateral funiculus. The present findings support our previous suggestion that STT axons migrate ventrally as they ascend the length of the spinal cord. Also, the present findings indicate that surgical cordotomies that interrupt the VLF in C2 likely disrupt the entire lumbar STT.


1994 ◽  
Vol 71 (3) ◽  
pp. 959-980 ◽  
Author(s):  
R. J. Dado ◽  
J. T. Katter ◽  
G. J. Giesler

1. Seventy-seven neurons in the cervical enlargement of rats anesthetized with urethan were initially antidromically activated using currents < or = 30 microA from the contralateral posterior thalamus. A goal of these experiments was to determine the course of physiologically characterized spinal axons within the diencephalon. Therefore, in 38 cases, additional antidromic mapping was done throughout the mediolateral extent of the diencephalon at multiple anterior-posterior planes. 2. Electrolytic lesions marking the recording sites were recovered for 71 neurons. Thirty-one were located in the superficial dorsal horn (SDH); 39 were in nucleus proprius or the lateral reticulated area of the deep dorsal horn (DDH), and one was in the ventral horn. 3. Eight of 38 (21%) neurons that were tested for more anterior projections could only be antidromically activated with currents < or = 30 microA from sites in the contralateral posterior thalamus. Such neurons are referred to as spinothalamic tract (STT) neurons. Lesions marking the lowest threshold points for antidromic activation were located in or near the posterior thalamic group (Po). At more anterior levels, considerably higher currents were required for antidromic activation or it was not possible to activate the neurons with currents up to 500 microA. Four of these neurons were physiologically characterized and each responded preferentially to noxious mechanical stimuli (wide dynamic range, WDR). Each of the three neurons that were tested responded to noxious heat stimuli. These findings confirm anatomic studies that have shown that a number of STT axons terminate in Po and suggest that such axons that originate in the cervical enlargement carry nociceptive input from the upper extremity. 4. In 15 cases, electrode penetrations were made systematically throughout much of the contralateral ventrobasal complex (VbC). In 17 cases, penetrations were made throughout the intralaminar nuclei contralaterally, including the central lateral nucleus (CL). Surprisingly, only one of the examined axons was antidromically activated with low currents from CL and one from VbC, although both of these nuclei are known to receive sizeable inputs from the STT. 5. Many of the axons (27 of the 38 tested, 71%) that were initially antidromically activated from the contralateral posterior thalamus could also be antidromically activated with low currents (< or = 30 microA) and at increased latencies from sites located anteriorly in the contralateral hypothalamus. Such neurons are referred to as spinothalamic tract/spinohypothalamic tract (STT/SHT) neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (3) ◽  
pp. 1095-1103 ◽  
Author(s):  
Qing Lin ◽  
Jing Wu ◽  
Yuan Bo Peng ◽  
Minglei Cui ◽  
William D. Willis

Inhibition of primate spinothalamic tract neurons by spinal glycine and GABA is modulated by guanosine 3′,5′-cyclic monophosphate. Our recent work has suggested that the nitric oxide/guanosine 3′,5′-cyclic monophosphate (NO/cGMP) signal transduction system contributes to central sensitization of spinothalamic tract (STT) neurons in part by influencing the descending inhibition of nociception resulting from stimulation in the periaqueductal gray. This study was designed to examine further whether activation of the NO/cGMP cascade reduces the inhibition of the activity of STT neurons mediated by spinal inhibitory amino acid (IAA) receptors. Responses of STT cells to noxious cutaneous stimuli were inhibited by iontophoresis of glycine and GABA agonists in anesthetized monkeys. Administration of 8-bromoguanosine-3′,5′-cyclophosphate sodium (8-bromo-cGMP), a membrane permeable analogue of cGMP, either by microdialysis or by iontophoresis reduced significantly the IAA-induced inhibition of wide dynamic range (WDR) STT cells in the deep layers of the dorsal horn. The reduction in inhibition lasted for up to 1–1.5 h after the cessation of drug infusion. In contrast, IAA-induced inhibition of WDR STT cells in the superficial dorsal horn and high-threshold (HT) cells in superficial or deep layers was not significantly changed during 8-bromo-cGMP infusion. Iontophoresis of 8-bromo-cGMP onto STT cells produced the same actions as produced by microdialysis of this agent, but the effect was not as long-lasting nor as potent. Finally, an attenuation of the IAA receptor–mediated inhibition of STT cells produced by iontophoretic release of a NO donor, 3-morpholinosydnonimine, could be blocked by pretreatment of the spinal cord with a guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. These results suggest that an increased spinal cGMP level contributes to the sensitization of WDR STT neurons in the deep dorsal horn in part by down-regulating spinal IAA receptors. However, no evidence is provided in this study that the NO/cGMP cascade regulates IAA receptors on HT and superficial WDR neurons. Combined with the preceding studies, our data support the view that NO and cGMP function in the same signal transduction cascade and play an important role in central sensitization.


1979 ◽  
Vol 42 (5) ◽  
pp. 1354-1369 ◽  
Author(s):  
J. M. Chung ◽  
D. R. Kenshalo ◽  
K. D. Gerhart ◽  
W. D. Willis

1. The responses of spinothalamic tract cells in the lumbosacral spinal cords of anesthetized monkeys were examined following electrical stimulation of the sural nerve or the application of noxious thermal and mechanical stimuli to the skin on the lateral aspect of the foot. 2. The spinothalamic tract neurons were classified as wide dynamic range (WDR), high-threshold (HT), or low-threshold (LT) cells on the basis of their responses to mechanical stimuli. 3. All of the WDR and HT spinothalamic tract cells tested responded to volleys in A- and C-fibers. However, strong C-fiber responses were more common in HT than in WDR cells. 4. The responses atributed to C-fibers were graded with the size of the C-fiber volley. The latencies of the responses attributed to C-fibers indicated that the fastest afferents involved had a mean conduction velocity of 0.9 m/s. The responses remained after anodal blockade of conduction in A-fibers. 5. Temporal summation of the responses of spinothalamic tract cells was demonstrated both to brief trains of stimuli at 33 Hz and to single stimuli repeated at 1- to 2-s intervals. The latter phenomenon is often called "windup." 6. The responses of several spinothalamic tract cells to noxious heat pulses could still be elicited during anodal blockade of conduction in A-fibers. Similarly, it was possible to demonstrate an excitatory action of noxious mechanical stimuli despite interference with conduction in A-fibers by anodal current. 7. The cells investigated were located either in the marginal zone or in the layers of the dorsal horn equivalent to Rexed's laminae IV-VI in the cat. The cells were generally activated antidromically from the caudal part of the ventral posterior lateral nucleus of the thalamus.


1994 ◽  
Vol 72 (4) ◽  
pp. 1464-1475 ◽  
Author(s):  
P. M. Dougherty ◽  
J. Palecek ◽  
V. Paleckova ◽  
W. D. Willis

1. Activation of neurokinin receptors contributes to the excitation of many dorsal horn neurons by cutaneous sensory stimuli, particularly noxious stimuli. In the present study we investigate the role of neurokinin receptors in the activation of primate spinothalamic tract (STT) neurons by cutaneous mechanical stimuli and by intradermal injection of capsaicin. This was done by testing the responses of these neurons to a battery of cutaneous stimuli before and during infusion by microdialysis of antagonists selective for NK1 and NK2 receptors. 2. The NK1 receptor antagonists cis-3-(2-methoxybenzyl-amino-2-benzhydrylquinuclidine (CP96345) and D-Pro9-[Spiro-y-lactam]-Leu10,Trp11)-Physalaemin(1-11) (GR82334) did not significantly reduce the responses of STT cells to mechanical stimulation of the skin. Both NK1 antagonists did, however, produce a significant reduction in the responses of STT neurons to an intradermal injection of capsaicin. Finally, despite having no effects on responses to mechanical stimuli, both NK1 antagonists prevented the sensitization of the responses to cutaneous stimuli that is usually observed after intradermal injections of capsaicin. 3. The NK2 selective antagonists PhCO-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH2 (GR98400) and [Tyr5,D-Trp6,8,9,Lys10]-NKA (4–10) (MEN10376) had effects very similar to those of the NK1 antagonists, but with an important difference. Neither NK2 antagonist affected the responses of STT neurons to noxious or innocuous mechanical stimulation of the skin, but they did reduce the responses to intradermal capsaicin injections. These compounds failed to prevent capsaicin-induced sensitization. In fact, cells exposed to GR98400 or MEN10376 showed unusually sustained increases in the responses to mechanical stimuli after the first capsaicin injection, suggesting that these compounds actually induced sensitization. 4. These results support the contention that both neurokinin receptors participate in the processing of nociceptive information in the dorsal horn, especially responses to strong stimuli such as intradermal injection of capsaicin. NK1 receptors are also involved in the sensitization of STT neurons after peripheral injury. A clearer understanding of the role of NK2 receptors in sensitization requires further studies with improved antagonists.


Sign in / Sign up

Export Citation Format

Share Document