Spinothalamic and spinohypothalamic tract neurons in the cervical enlargement of rats. II. Responses to innocuous and noxious mechanical and thermal stimuli

1994 ◽  
Vol 71 (3) ◽  
pp. 981-1002 ◽  
Author(s):  
R. J. Dado ◽  
J. T. Katter ◽  
G. J. Giesler

1. The goal of this study was to gather data that would increase our understanding of nociceptive processing by spinothalamic tract (STT) neurons that receive inputs from the hand and arm. Fifty neurons in the cervical enlargement of urethan-anesthetized rats were antidromically activated from the contralateral posterior thalamus. A stimulating electrode was moved systematically within an anterior-posterior plane in the thalamus until a point was located where the smallest amount of current antidromically activated the neuron. The antidromic thresholds at each of these lowest threshold points was < or = 30 microA; the mean antidromic threshold was 15.4 +/- 1.0 (SE) microA. Lowest threshold points were found primarily in the posterior thalamic group (Po), zona incerta, and in or near the supraoptic decussation. 2. The recording sites of 47 neurons were marked and recovered. Recording sites were located in the superficial dorsal horn (SDH, n = 15), deep dorsal horn (DDH, n = 31), and ventral horn (n = 1). Recording sites were located across the mediolateral extent of the SDH. Within the DDH, recording sites were concentrated laterally in nucleus proprius and dorsally in the lateral reticulated area. The locations of the recording points confirm previous anatomic descriptions of STT neurons in the cervical enlargement. 3. Cutaneous excitatory receptive fields were restricted to the ipsilateral forepaw or forelimb in 67% (10/15) of the neurons recorded in the SDH and 42% (13/31) of the neurons recorded in the DDH. Neurons having larger, more complex receptive fields were also commonly encountered. Thirty-three percent (5/15) of the neurons recorded in the SDH and 58% (18/31) recorded in the DDH had receptive fields that were often discontinuous and included areas of the ipsilateral shoulder, thorax, and head, including the face. 4. Innocuous and noxious mechanical stimuli were applied to the receptive field of each neuron. Fifty percent (25/50) responded to innocuous mechanical stimuli but responded at higher frequencies to noxious stimuli (wide dynamic range, WDR). Forty-four percent (22/50) responded only to noxious stimuli (high threshold, HT). Six percent (3/50) responded preferentially to innocuous stimuli (low threshold, LT). WDR and HT neurons were recorded in both the SDH and DDH, including nucleus proprius, an area not typically associated with nociceptive transmission at other levels of the cord. Sixty percent (9/15) of the units recorded in the SDH were classified as WDR neurons; the other 40% (6/15) were classified HT. Forty-eight percent (15/31) of the units recorded in the DDH were classified as WDR neurons and 42% (13/31) as HT.(ABSTRACT TRUNCATED AT 400 WORDS)

1996 ◽  
Vol 75 (6) ◽  
pp. 2606-2628 ◽  
Author(s):  
J. T. Katter ◽  
R. J. Dado ◽  
E. Kostarczyk ◽  
G. J. Giesler

1. A goal of this study was to determine whether neurons in the sacral spinal cord that project to the diencephalon are involved in the processing and transmission of sensory information that arises in the perineum and pelvis. Therefore, 58 neurons in segments L6-S2 were activated antidromically with currents < or = 30 microA from points in the contralateral diencephalon in rats that were anesthetized with urethan. 2. Responses to mechanical stimuli applied to the cutaneous receptive fields of these neurons were used to classify them as low-threshold (LT), wide dynamic range (WDR) or high-threshold (HT) neurons. Twenty-two neurons (38%) responded preferentially to brushing (LT neurons). Eighteen neurons (31%) responded to brushing but responded with higher firing frequencies to noxious mechanical stimuli (WDR neurons). Eighteen neurons (31%) responded only to noxious intensities of mechanical stimulation (HT neurons). LT neurons were recorded predominantly in nucleus proprius of the dorsal horn. Nociceptive neurons (WDR and HT) were recorded throughout the dorsal horn. 3. Cutaneous receptive fields were mapped for 56 neurons. Forty-five (80%) had receptive fields that included at least two of the following regions ipsilaterally: the rump, perineum, or tail. Eleven neurons (20%) had receptive fields that were restricted to one of these areas or to the ipsilateral hind limb. Thirty-eight neurons (68%) had cutaneous receptive fields that also included regions of the contralateral tail or perineum. On the perineum, receptive fields usually encompassed perianal and perivaginal areas including the clitoral sheath. There were no statistically significant differences in the locations or sizes of receptive fields for LT neurons compared with nociceptive (WDR and HT) neurons. 4. Thirty-seven LT, WDR, and HT neurons were tested for their responsiveness to heat stimuli. Five (14%) responded to increasing intensities of heat with graded increases in their firing frequencies. Thirty-two LT, WDR, and HT neurons also were tested with cold stimuli. None responded with graded increases in their firing frequencies to increasingly colder stimuli. There were no statistically significant differences among the responses of LT, WDR, and HT neurons to either heat or cold stimuli. 5. Forty LT, WDR, and HT neurons were tested for their responsiveness to visceral stimuli by distending a balloon placed into the rectum and colon with a series of increasing pressures. Seventeen (43%) exhibited graded increases in their firing frequencies in response to increasing pressures of colorectal distention (CrD). None of the responsive neurons responded reproducibly to CrD at an intensity of 20 mmHg, and all responded at intensities of > or = 80 mmHg. More than 90% responded abruptly at stimulus onset, responded continuously throughout the stimulus period, and stopped responding immediately after termination of the stimulus. 6. Thirty-one neurons were tested for their responsiveness to distention of a balloon placed inside the vagina. Eleven (35%) exhibited graded increases in their firing frequencies in response to increasing pressures of vaginal distention (VaD). The thresholds and temporal profiles of the responses to VaD were similar to those for CrD. Twenty-nine neurons were tested with both CrD and VaD. Thirteen (45%) were excited by both stimuli, four (14%) responded to CrD but not VaD, and one (3%) was excited by VaD but not CrD. Neurons excited by CrD, VaD, or both were recorded throughout the dorsal horn. 7. As a population, WDR neurons, but not LT or HT neurons, encoded increasing pressures of CrD and VaD with graded increases in their firing frequencies. The responses of WDR neurons to CrD differed significantly from those of either LT or HT neurons. Regression analyses of the stimulus-response functions of responsive WDR neurons to CrD and VaD were described by power functions with exponents of 1.6 and 2.4, respectively.(ABSTRACT TRUNCATED)


1994 ◽  
Vol 72 (6) ◽  
pp. 2590-2597 ◽  
Author(s):  
J. W. Leem ◽  
B. H. Lee ◽  
W. D. Willis ◽  
J. M. Chung

1. A set of 11 cutaneous stimuli defined previously to differentiate among different types of cutaneous sensory receptors in the rat hindpaw was also effective in differentially activating second-order sensory neurons in the dorsal horn and the gracile nucleus of rats. 2. All sampled units were responsive to more than 1 of the 11 stimuli. However, none responded to innocuous warming or cooling stimuli. Therefore further analysis was restricted to responses to nine of the selected stimuli. 3. Cluster analysis of the responses to nine selected innocuous and noxious mechanical stimuli and noxious thermal stimuli yielded seven classes that seemed functionally distinct from each other: a class of high-threshold neurons, three classes of convergent (wide dynamic range) neurons, a class of a mixture of poorly responsive neurons and neurons receiving Pacinian inputs, and two classes of low-threshold neurons. 4. High-threshold neurons responded predominantly to noxious mechanical and thermal stimuli and presumably received an input from both mechanically and thermally sensitive nociceptors. These cells were located in the dorsal horn, and some were spinothalamic tract cells. Wide dynamic range neurons were excited by innocuous and noxious stimuli, but better by noxious stimuli. These classes of cells were either in the dorsal horn (some were spinothalamic tract cells) or in the nucleus gracilis.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 71 (3) ◽  
pp. 959-980 ◽  
Author(s):  
R. J. Dado ◽  
J. T. Katter ◽  
G. J. Giesler

1. Seventy-seven neurons in the cervical enlargement of rats anesthetized with urethan were initially antidromically activated using currents < or = 30 microA from the contralateral posterior thalamus. A goal of these experiments was to determine the course of physiologically characterized spinal axons within the diencephalon. Therefore, in 38 cases, additional antidromic mapping was done throughout the mediolateral extent of the diencephalon at multiple anterior-posterior planes. 2. Electrolytic lesions marking the recording sites were recovered for 71 neurons. Thirty-one were located in the superficial dorsal horn (SDH); 39 were in nucleus proprius or the lateral reticulated area of the deep dorsal horn (DDH), and one was in the ventral horn. 3. Eight of 38 (21%) neurons that were tested for more anterior projections could only be antidromically activated with currents < or = 30 microA from sites in the contralateral posterior thalamus. Such neurons are referred to as spinothalamic tract (STT) neurons. Lesions marking the lowest threshold points for antidromic activation were located in or near the posterior thalamic group (Po). At more anterior levels, considerably higher currents were required for antidromic activation or it was not possible to activate the neurons with currents up to 500 microA. Four of these neurons were physiologically characterized and each responded preferentially to noxious mechanical stimuli (wide dynamic range, WDR). Each of the three neurons that were tested responded to noxious heat stimuli. These findings confirm anatomic studies that have shown that a number of STT axons terminate in Po and suggest that such axons that originate in the cervical enlargement carry nociceptive input from the upper extremity. 4. In 15 cases, electrode penetrations were made systematically throughout much of the contralateral ventrobasal complex (VbC). In 17 cases, penetrations were made throughout the intralaminar nuclei contralaterally, including the central lateral nucleus (CL). Surprisingly, only one of the examined axons was antidromically activated with low currents from CL and one from VbC, although both of these nuclei are known to receive sizeable inputs from the STT. 5. Many of the axons (27 of the 38 tested, 71%) that were initially antidromically activated from the contralateral posterior thalamus could also be antidromically activated with low currents (< or = 30 microA) and at increased latencies from sites located anteriorly in the contralateral hypothalamus. Such neurons are referred to as spinothalamic tract/spinohypothalamic tract (STT/SHT) neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (3) ◽  
pp. 1086-1094 ◽  
Author(s):  
Qing Lin ◽  
Jing Wu ◽  
Yuan Bo Peng ◽  
Minglei Cui ◽  
William D. Willis

Nitric oxide–mediated spinal disinhibition contributes to the sensitization of primate spinothalamic tract neurons. This study concentrated on whether an increase in spinal nitric oxide (NO) diminishes inhibition of spinothalamic tract (STT) cells induced by activating the periaqueductal gray (PAG) or spinal glycinergic and GABAergic receptors, thus contributing to the sensitization of STT neurons. A reduction in inhibition of the responses to cutaneous mechanical stimuli induced by PAG stimulation was seen in wide dynamic range (WDR) STT cells located in the deep layers of the dorsal horn when these neurons were sensitized during administration of a NO donor, 3-morpholinosydnonimine (SIN-1), into the dorsal horn by microdialysis. In contrast, PAG-induced inhibition of the responses of high-threshold (HT) and superficial WDR STT cells was not significantly changed by spinal infusion of SIN-1. A reduction in PAG inhibition when STT cells were sensitized after intradermal injection of capsaicin could be nearly completely blocked by pretreatment of the dorsal horn with a NO synthase inhibitor, 7-nitroindazole. Moreover, spinal inhibition of nociceptive activity of deep WDR STT neurons elicited by iontophoretic release of glycine and GABA agonists was attenuated by administration of SIN-1. This change paralleled the change in PAG-induced inhibition. However, the inhibition of HT and superficial WDR cells induced by glycine and GABA release did not show a significant change when SIN-1 was administered spinally. Combined with our recent results, these data show that the effectiveness of spinal inhibition can be reduced by the NO/cGMP pathway. Thus disinhibition may constitute one mechanism underlying central sensitization.


1988 ◽  
Vol 59 (3) ◽  
pp. 886-907 ◽  
Author(s):  
D. G. Ferrington ◽  
J. W. Downie ◽  
W. D. Willis

1. Recordings were made from 67 neurons in the nucleus gracilis (NG) of anesthetized macaque monkeys. All of the cells were activated antidromically from the ventral posterior lateral (VPL) nucleus of the contralateral thalamus. Stimuli used to activate the cells orthodromically were graded innocuous and noxious mechanical stimuli, including sinusoidal vibration and thermal pulses. 2. The latencies of antidromic action potentials following stimulation in the VPL nucleus were significantly shorter for cells in the caudal compared with the rostral NG. The mean minimum afferent conduction velocity of the afferent conduction velocity of the afferent fibers exciting the NG cells was 52 m/s, as judged from the latencies of the cells to orthodromic volleys evoked by electrical stimulation of peripheral nerves. The overall conduction velocity of the pathway from peripheral nerve to thalamus was approximately 40 m/s. 3. Cutaneous receptive fields on the distal hindlimb usually occupied an area equivalent to much less than a single digit. However, a few cells had receptive fields up to or exceeding the area of the foot. 4. NG cells were classified by their responses to graded mechanical stimulation of the skin as low threshold (LT) or wide dynamic range (WDR). No high-threshold NG cells were found. A special subcategory of pressure-sensitive LT (SA) neurons was recognized. Many of these cells were maximally responsive to maintained indentation of the skin. The sample of NG cells differed from the population of primate spinothalamic and spinocervicothalamic pathways so far examined, in having a larger proportion of LT neurons and a smaller proportion of WDR cells. A few NG cells responded best to manipulation of subcutaneous tissue. 5. Discriminant analysis permitted the NG cells to be assigned to classes determined by a k-means cluster analysis of the responses of a reference set of 318 primate spinothalamic tract (STT) cells. There were four classes of cells based on normalized responses of individual neurons and another four classes based upon responses compared across the population of cells. The NG cells were allocated to the various categories in different proportions than either primate STT cells or spinocervicothalamic neurons, consistent with the view that the functional roles of these somatosensory pathways differ. 6. Some of the pressure-sensitive NG cells were excited when the skin was stretched, suggesting an input from type II slowly adapting (Ruffini) mechanoreceptors.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 90 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Yuan Bo Peng ◽  
Qing Dong Ling ◽  
M. A. Ruda ◽  
Daniel R. Kenshalo

Neonatal peripheral inflammation has been shown to produce profound anatomical changes in the dorsal horn of adult rats. In this study, we explored whether parallel physiological changes exist. Neonatal rats were injected with complete Freund's adjuvant (CFA) into the left hind paw. At 8–10 wk of age, single dorsal horn neurons were recorded in response to graded intensities of mechanical stimuli delivered to the receptive field. In addition, cord dorsum potentials, produced by electrical stimuli delivered to the left sciatic nerve at 2.5× threshold, were recorded bilaterally from L2 to S3. There were significant increases in background activity and responses to brush and pinch in neonatal rats that were treated with CFA, as compared with control rats. Further analysis showed similar significant changes when dorsal horn neurons were categorized into wide dynamic range (WDR), high-threshold (HT), and low-threshold (LT) groups. The receptive field was significantly larger in neonatally treated rats as compared with control rats. Additionally, there was a significant increase in the response to a 49°C heat stimulus in neonatally treated rats as compared with control rats. There was also a trend for the amplitudes of N1, N2, and P waves of the cord dorsum potential to increase and latencies to decrease in neonatally treated rats, but no significant differences were detected between different levels of the spinal cord (L2 to S3). These data further support the notion that anatomical and physiological plasticity changes occurred in the spinal cord following early neonatal CFA treatment.


2001 ◽  
Vol 86 (6) ◽  
pp. 2868-2877 ◽  
Author(s):  
Koichi Iwata ◽  
Takao Imai ◽  
Yoshiyuki Tsuboi ◽  
Akimasa Tashiro ◽  
Akiko Ogawa ◽  
...  

The effects of inferior alveolar nerve (IAN) transection on escape behavior and MDH neuronal activity to noxious and nonnoxious stimulation of the face were precisely analyzed. Relative thresholds for escape from mechanical stimulation applied to the whisker pad area ipsilateral to the transection were significantly lower than that for the contralateral and sham-operated whisker pad until 28 days after the transection, then returned to the preoperative level at 40 days after transection. A total of 540 neurons were recorded from the medullary dorsal horn (MDH) of the nontreated naive rats [low-threshold mechanoreceptive (LTM), 27; wide dynamic range (WDR), 31; nociceptive specific (NS), 11] and sham-operated rats with skin incision (LTM, 34; WDR, 30; NS, 23) and from the ipsilateral (LTM, 82; WDR, 82; NS, 31) and contralateral MDH relative to the IAN transection (LTM, 77; WDR, 82; NS, 33). The electrophysiological properties of these neurons were precisely analyzed. Background activity of WDR neurons on the ipsilateral side relative to the transection was significantly increased at 2–14 days after the operation as compared with that of naive rats. Innocuous and noxious mechanical-evoked responses of LTM and WDR neurons were significantly enhanced at 2–14 days after IAN transection. The mean area of the receptive fields of WDR neurons was significantly larger on the ipsilateral MDH at 2–7 days after transection than that of naive rats. We could not observe any modulation of thermal responses of WDR and NS neurons following IAN transection. Also, no MDH neurons were significantly affected in the rats with sham operations. The present findings suggest that the increment of neuronal activity of WDR neurons in the MDH following IAN transection may play an important role in the development of the mechano-allodynia induced in the area adjacent to the area innervated by the injured nerve.


1991 ◽  
Vol 66 (3) ◽  
pp. 1021-1032 ◽  
Author(s):  
H. G. Schaible ◽  
V. Neugebauer ◽  
F. Cervero ◽  
R. F. Schmidt

1. In 15 alpha-chloralose-anesthetized cats we studied the presence of tonic descending inhibition (TDI) of spinal neurons with input from the knee and its modulation during an acute inflammation of this joint. TDI of spinal neurons with articular input was assessed by applying reversible cold blocks to the lower thoracic cord. The amount of descending inhibition was estimated from the induction and/or increase of resting discharges and of the responses to mechanical stimuli to the knee and other structures during the transitory and reversible blocks. In each experiment one or a few neurons were investigated while the joint was in normal condition [altogether 15 nociceptive-specific (NS) and 6 wide-dynamic-range (WDR) neurons]. One of the neurons was then selected for long-term recordings during which an acute inflammation in the knee was induced by the intra-articular injection of kaolin and carrageenan. Before and during developing arthritis, cold blocks were applied to examine whether the amount of TDI would change during the inflammatory process. 2. The neurons with input from the normal knee were under TDI because application of the cold block induced or increased resting discharges and the responses to noxious compression of the knee and the adjacent thigh and lower leg. In 10 of 15 NS neurons, the response threshold was lowered into the innocuous range. In 9 of 17 cells tested, the excitatory receptive field expanded to the ipsilateral paw, and 4 neurons became inhibited by paw compression. Seven of 18 neurons tested revealed inhibitory receptive fields on the contralateral leg during cold block. The neurons were located in laminae IV-VII. 3. Fourteen neurons were continuously monitored during development of inflammation, and changes in the effectiveness of TDI were assessed by blocking the cord before and during the development of arthritis. In most neurons baseline resting activity in the intact state of the cord increased while the arthritis developed. This inflammation-evoked enhancement of resting discharges was more pronounced during periods of spinalization. Consequently, the differences between the resting discharges in the cold-blocked and the intact state were progressively enhanced in arthritis. 4. After induction of arthritis, the responses to compression of the knee joint increased in the intact state as well as during cold blocks. In 11 of 14 neurons, the differences between the responses in the spinal and intact state were progressively enlarged during the development of inflammation. A similar result was obtained for flexion of the injected knee.(ABSTRACT TRUNCATED AT 400 WORDS)


2004 ◽  
Vol 91 (1) ◽  
pp. 213-222 ◽  
Author(s):  
Donald A. Simone ◽  
Xijing Zhang ◽  
Jun Li ◽  
Jun-Ming Zhang ◽  
Christopher N. Honda ◽  
...  

We investigated the role of mechanosensitive spinothalamic tract (STT) neurons in mediating 1) the itch evoked by intradermal injection of histamine, 2) the enhanced sense of itch evoked by innocuous stroking (alloknesis), and 3) the enhanced pain evoked by punctate stimulation (hyperalgesia) of the skin surrounding the injection site. Responses to intradermal injections of histamine and capsaicin were compared in STT neurons recorded in either the superficial or the deep dorsal horn of the anesthetized monkey. Each neuron was identified by antidromic activation from the ventral posterior lateral nucleus of thalamus and classified by its initial responses to mechanical stimuli as wide dynamic range (WDR) or high-threshold (HT). Approximately half of the WDRs and one of the HTs responded weakly to histamine, some with a duration > 5 min, the maximal time allotted. WDRs but not HTs exhibited a significant increase in response to punctate stimulation after histamine consistent with their possible role in mediating histamine-induced hyperalgesia. Neither type of neuron exhibited significant changes in response to stroking, consistent with their unlikely role in mediating alloknesis. Furthermore, nearly all STT neurons exhibited vigorous and persistent responses to capsaicin, after which they became sensitized to stroking and to punctate stimulation. We conclude that the STT neurons in our sample are more likely to contribute to pain, allodynia, and hyperalgesia than to itch and alloknesis.


1989 ◽  
Vol 62 (2) ◽  
pp. 437-449 ◽  
Author(s):  
W. Maixner ◽  
R. Dubner ◽  
D. R. Kenshalo ◽  
M. C. Bushnell ◽  
J. L. Oliveras

1. We examined the activity of thermally sensitive trigeminothalamic neurons and nonprojection neurons in the medullary dorsal horn (trigeminal nucleus caudalis) in three monkeys performing thermal and visual detection tasks. 2. An examination of neuronal stimulus-response functions, obtained during thermal-detection tasks in which noxious heat stimuli were applied to the face, indicated that wide-dynamic-range neurons (WDR, responsive to innocuous mechanical stimuli with greater responses to noxious mechanical stimuli) could be subclassified based on the slope values of linear regression lines. WDR1 neurons exhibited significantly greater sensitivity to noxious heat stimulation than WDR2 neurons or nociceptive-specific neurons (NS, responsive only to noxious stimuli). 3. In one behavioral task, the monkeys detected 1.0 degrees C increases in noxious heat from preceding noxious heat stimuli ranging from 44 to 48 degrees C. WDR1, WDR2, and NS neurons increased their discharge frequency as a function of the intensity of the first noxious heat temperature (T1) as well as the final temperature (T2). The responses of WDR1 neurons were greater than those produced by WDR2 or NS neurons across all the temperatures examined. The order of stimulus presentation affected the responses of WDR1 neurons to 1.0 degrees C increases in the noxious heat range but not those of WDR2 or NS neurons. 4. In a second behavioral task, the monkeys detected small increases in noxious heat (0.2-0.8 degrees C) from a first temperature of 46 degrees C. Although the responses of all three classes of neurons were monotonically related to stimulus intensity, WDR1 neurons exhibited greater sensitivity to small temperature increases than either WDR2 or NS neurons. 5. Subpopulations of all three classes of neurons exhibited responses that were independent of thermal stimulus parameters or sensory modality and that only occurred during the behavioral task. These task-related responses were time-locked to specific behavioral events associated with trial initiation and trial continuation. 6. These data provide evidence that a subpopulation of WDR neurons is the dorsal horn cell type most sensitive to small increases in noxious heat in the 45-49 degrees C temperature range and provides the most information about stimulus intensity. The findings support the view that nociceptive neurons have the capacity to precisely encode stimulus features in the noxious range and that WDR neurons are likely to participate in the monkeys' ability to perceive the intensity of such stimuli.


Sign in / Sign up

Export Citation Format

Share Document