scholarly journals Shape Interactions in Macaque Inferior Temporal Neurons

1999 ◽  
Vol 82 (1) ◽  
pp. 131-142 ◽  
Author(s):  
Marcus Missal ◽  
Rufin Vogels ◽  
Chao-Yi Li ◽  
Guy A. Orban

Missal et al. observed that the responses of inferior temporal (IT) neurons to a shape were reduced markedly when this shape partially overlapped a larger second shape, suggesting that shape interactions determine IT responses. In the present study, we compared the responses of IT neurons with combinations of two shapes which did or did not overlap and studied the effect of the relative and absolute positions of the two shapes. In a first test, a preferred shape (figure) was presented at the fixation point while a second, nonpreferred, shape was displayed either in the background of the figure (overlap) or at one of four peripheral positions (nonoverlap). Controls consisted of presentations of either shape in isolation at each of the five positions. The stimuli were presented during a fixation task. The responses to these combinations of two shapes were, on average, reduced compared with those elicited by the preferred shape presented in isolation. This suppression occurred whether or not the two shapes overlapped, but the degree of suppression in the overlap and nonoverlap conditions did not correlate. These interactions were stronger when the interacting stimulus was located in the contralateral compared with the ipsilateral hemifield. The position of the interacting stimulus within a hemifield significantly affected the suppression associated with combined shapes in some neurons. The strength of the interactions of the two nonoverlapping shapes depended on the shape of the interacting stimulus in half of the neurons. In a second test, the preferred shape and interacting stimulus could appear either at the fixation point or at one eccentric position. Here we found that the suppression was, on average, strongest when the interacting stimulus, rather than the preferred shape, was presented at the fixation position. Also, in 40% of the neurons, the response reduction was similar in overlap and nonoverlap conditions if effects of stimulus position were taken into account. In both tests, we also measured the responses to combinations of a nonpreferred shape and the interacting stimulus and showed that the response to a combination of two nonpreferred shapes was, in general, smaller than the response to a combination of the preferred and nonpreferred shape. Overall the results indicate that stimulus interactions in the receptive fields of IT neurons can be position and shape selective; this can contribute to the coding for the relationships between object parts.

2007 ◽  
Vol 97 (5) ◽  
pp. 3439-3448 ◽  
Author(s):  
Yamei Tang ◽  
Alan Saul ◽  
Moshe Gur ◽  
Stephanie Goei ◽  
Elsie Wong ◽  
...  

Studies of visual function in behaving subjects require that stimuli be positioned reliably on the retina in the presence of eye movements. Fixational eye movements scatter stimuli about the retina, inflating estimates of receptive field dimensions, reducing estimates of peak responses, and blurring maps of receptive field subregions. Scleral search coils are frequently used to measure eye position, but their utility for correcting the effects of fixational eye movements on receptive field maps has been questioned. Using eye coils sutured to the sclera and preamplifiers configured to minimize cable artifacts, we reexamined this issue in two rhesus monkeys. During repeated fixation trials, the eye position signal was used to adjust the stimulus position, compensating for eye movements and correcting the stimulus position to place it at the desired location on the retina. Estimates of response magnitudes and receptive field characteristics in V1 and in LGN were obtained in both compensated and uncompensated conditions. Receptive fields were narrower, with steeper borders, and response amplitudes were higher when eye movement compensation was used. In sum, compensating for eye movements facilitated more precise definition of the receptive field. We also monitored horizontal vergence over long sequences of fixation trials and found the variability to be low, as expected for this precise behavior. Our results imply that eye coil signals can be highly accurate and useful for optimizing visual physiology when rigorous precautions are observed.


2006 ◽  
Vol 95 (3) ◽  
pp. 1864-1880 ◽  
Author(s):  
Santosh G. Mysore ◽  
Rufin Vogels ◽  
Steve E. Raiguel ◽  
Guy A. Orban

We used gratings and shapes defined by relative motion to study selectivity for static kinetic boundaries in macaque V4 neurons. Kinetic gratings were generated by random pixels moving in opposite directions in the neighboring bars, either parallel to the orientation of the boundary (parallel kinetic grating) or perpendicular to the boundary (orthogonal kinetic grating). Neurons were also tested with static, luminance defined gratings to establish cue invariance. In addition, we used eight shapes defined either by relative motion or by luminance contrast, as used previously to test cue invariance in the infero-temporal (IT) cortex. A sizeable fraction (10–20%) of the V4 neurons responded selectively to kinetic patterns. Most neurons selective for kinetic contours had receptive fields (RFs) within the central 10° of the visual field. Neurons selective for the orientation of kinetic gratings were defined as having similar orientation preferences for the two types of kinetic gratings, and the vast majority of these neurons also retained the same orientation preference for luminance defined gratings. Also, kinetic shape selective neurons had similar shape preferences when the shape was defined by relative motion or by luminance contrast, showing a cue-invariant form processing in V4. Although shape selectivity was weaker in V4 than what has been reported in the IT cortex, cue invariance was similar in the two areas, suggesting that invariance for luminance and motion cues of IT originates in V4. The neurons selective for kinetic patterns tended to be clustered within dorsal V4.


2005 ◽  
Vol 93 (5) ◽  
pp. 2374-2387 ◽  
Author(s):  
Masayuki Matsumoto ◽  
Hidehiko Komatsu

Although there is no retinal input within the blind spot, it is filled with the same visual attributes as its surround. Earlier studies showed that neural responses are evoked at the retinotopic representation of the blind spot in the primary visual cortex (V1) when perceptual filling-in of a surface or completion of a bar occurs. To determine whether these neural responses correlate with perception, we recorded from V1 neurons whose receptive fields overlapped the blind spot. Bar stimuli of various lengths were presented at the blind spots of monkeys while they performed a fixation task. One end of the bar was fixed at a position outside the blind spot, and the position of the other end was varied. Perceived bar length was measured using a similar set of bar stimuli in human subjects. As long as one end of the bar was inside the blind spot, the perceived bar length remained constant, and when the bar exceeded the blind spot, perceptual completion occurred, and the perceived bar length increased substantially. Some V1 neurons of the monkey exhibited a significant increase in their activity when the bar exceeded the blind spot, even though the amount of the retinal stimulation increased only slightly. These response increases coincided with perceptual completion observed in human subjects and were much larger than would be expected from simple spatial summation and could not be explained by contextual modulation. We conclude that the completed bar appearing on the part of the receptive field embedded within the blind spot gave rise to the observed increase in neuronal activity.


2003 ◽  
Vol 90 (2) ◽  
pp. 946-960 ◽  
Author(s):  
Jenny C. A. Read ◽  
Bruce G. Cumming

One difficulty with measuring receptive fields in the awake monkey is that even well-trained animals make small eye movements during fixation. These complicate the measurement of receptive fields by blurring out the region where a response is observed, causing underestimates of the ability of individual neurons to signal changes in stimulus position. In simple cells, this blurring may severely disrupt estimates of receptive field structure. An accurate measurement of eye movements would allow correction of this blurring. Scleral search coils have been used to provide such measurements, although little is known about their accuracy. We have devised a range of approaches to address this issue: implanting two coils into a single eye, exploiting the small size of V1 receptive fields and developing maximum-likelihood fitting techniques to extract receptive field parameters in the presence of eye movements. All our investigations lead to the same conclusion: our scleral search coils (which were not sutured to the globe) are subject to an error of approximately the same magnitude as the small eye movements which occur during fixation: SD ∼ 0.1°. This error is large enough to explain the SD of measured vergence in the absence of any real changes in vergence state. This, and a variety of other arguments, indicate that the real variation in vergence is much smaller than coil measurements suggest. These results suggest that monkeys, like humans, maintain very stable vergence. The error has a slower time course than fixational eye movements so that search coils report the difference in eye position between two consecutive trials more accurately than the eye position itself on either trial. Receptive field estimates are unlikely to be improved by assuming the coil record is veridical and correcting for eye position accordingly. However, receptive field parameters can reliably be determined by a fitting technique that allows for eye movements. It is possible that suturing coils to the globe reduces the artifacts, but no method has been available to demonstrate this. These receptive field measurements provide a general means by which the reliability of eye-position measurements can be assessed.


2015 ◽  
Vol 114 (1) ◽  
pp. 717-735 ◽  
Author(s):  
Yaoguang Jiang ◽  
Dmitry Yampolsky ◽  
Gopathy Purushothaman ◽  
Vivien A. Casagrande

Fundamental to neuroscience is the understanding of how the language of neurons relates to behavior. In the lateral geniculate nucleus (LGN), cells show distinct properties such as selectivity for particular wavelengths, increments or decrements in contrast, or preference for fine detail versus rapid motion. No studies, however, have measured how LGN cells respond when an animal is challenged to make a perceptual decision using information within the receptive fields of those LGN cells. In this study we measured neural activity in the macaque LGN during a two-alternative, forced-choice (2AFC) contrast detection task or during a passive fixation task and found that a small proportion (13.5%) of single LGN parvocellular (P) and magnocellular (M) neurons matched the psychophysical performance of the monkey. The majority of LGN neurons measured in both tasks were not as sensitive as the monkey. The covariation between neural response and behavior (quantified as choice probability) was significantly above chance during active detection, even when there was no external stimulus. Interneuronal correlations and task-related gain modulations were negligible under the same condition. A bottom-up pooling model that used sensory neural responses to compute perceptual choices in the absence of interneuronal correlations could fully explain these results at the level of the LGN, supporting the hypothesis that the perceptual decision pool consists of multiple sensory neurons and that response fluctuations in these neurons can influence perception.


2019 ◽  
Author(s):  
Marian Schneider ◽  
Ingo Marquardt ◽  
Shubharthi Sengupta ◽  
Federico De Martino ◽  
Rainer Goebel

ABSTRACTMotion signals can bias the perceived position of visual stimuli. While the apparent position of a stimulus is biased in the direction of motion, electro-physiological studies have shown that the receptive field (RF) of neurons is shifted in the direction opposite to motion, at least in cats and macaque monkeys. In humans, it remains unclear how motion signals affect population RF (pRF) estimates. We addressed this question using psychophysical measurements and functional magnetic resonance imaging (fMRI) at 7 Tesla. We systematically varied two factors: the motion direction of the carrier pattern (inward, outward and flicker motion) and the contrast of the mapping stimulus (low and high stimulus contrast). We observed that while physical positions were identical across all conditions, presence of low-contrast motion, but not high-contrast motion, shifted perceived stimulus position in the direction of motion. Correspondingly, we found that pRF estimates in early visual cortex were shifted against the direction of motion for low-contrast stimuli but not for high stimulus contrast. We offer an explanation in form of a model for why apertures are perceptually shifted in the direction of motion even though pRFs shift in the opposite direction.


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Sign in / Sign up

Export Citation Format

Share Document