shape selectivity
Recently Published Documents





Baoyu Liu ◽  
Zhantu Liao ◽  
Jianwen Zhang ◽  
Yeqing Huang

Regularly spaced MWW nanosheets combined with single-unit-cell thickness and optimized Al species distribution are highly effective for the alkylation between benzene with 1-dodecene, high conversion of 1-dodecene (ca. 85 %) and selectivity of 2-LAB (ca. 80 %) can be obtained. Detailed studies of this MWW nanaosheets system reveal that ultra-thin MWW nanosheets with ordered arrangement can expose more accessible Brønsted acid sites (ca. ~89 %), and specially place framework Al species on the T2 sites (ca. ~13 %), in which the alkylation mainly occurred under the catalysis of accessible Brønsted acid sites. Besides, the desired 2-LAB is produced on the unique 12-MR hemicavities with solid binding energy and perfect steric configuration. As a proof-of-concept study, we integrate the highly exposed Brønsted acid sites and unrivalled shape-selectivity in the regularly spaced MWW nanosheets system with well characterized acid sites accessibility and pore adaptability, leading to the excellent catalytic performance.

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1541
Bhupendra Kumar Singh ◽  
Yongseok Kim ◽  
Seungdon Kwon ◽  
Kyungsu Na

Currently, zeolites are one of the most important classes of heterogeneous catalysts in chemical industries owing to their unique structural characteristics such as molecular-scale size/shape-selectivity, heterogenized single catalytic sites in the framework, and excellent stability in harsh industrial processes. However, the microporous structure of conventional zeolite materials limits their applications to small-molecule reactions. To alleviate this problem, mesoporous zeolitic frameworks were developed. In the last few decades, several methods have been developed for the synthesis of mesoporous zeolites; these zeolites have demonstrated greater lifetime and better performance than their bulk microporous counterparts in many catalytic processes, which can be explained by the rapid diffusion of reactant species into the zeolite framework and facile accessibility to bulky molecules through the mesopores. Mesoporous zeolites provide versatile opportunities not only in conventional chemical industries but also in emerging catalysis fields. This review presents many state-of-the-art mesoporous zeolites, discusses various strategies for their synthesis, and details their contributions to catalytic reactions including catalytic cracking, isomerization, alkylation and acylation, alternative fuel synthesis via methanol-to-hydrocarbon (MTH) and Fischer–Tropsch synthesis (FTS) routes, and different fine-chemical syntheses.

Ji-Min Yang ◽  
Yong-Qing Chen ◽  
Yang Yu ◽  
Pablo Ballester ◽  
Julius Rebek

2021 ◽  
Daniel Schwalbe-Koda ◽  
Avelino Corma ◽  
Yuriy Román-Leshkov ◽  
Manuel Moliner ◽  
Rafael Gómez-Bombarelli

Zeolites are inorganic materials with wide industrial applications due to their topological diversity. Tailoring confinement effects in zeolite pores, for instance by crystallizing intergrown frameworks, can improve their catalytic and transport properties, but controlling zeolite crystallization often relies on heuristics. In this work, we use computational simulations and data mining to design organic structure-directing agents (OSDAs) to favor the synthesis of intergrown zeolites. First, we propose design principles to identify OSDAs which are selective towards both end members of the disordered structure. Then, we mine a database of hundreds of thousands of zeolite-OSDA pairs and downselect OSDA candidates to synthesize known intergrowth zeolites such as CHA/AFX, MTT/TON, and BEC/ISV. The computationally designed OSDAs balance phase competition metrics and shape selectivity towards the frameworks, thus bypassing expensive dual-OSDA approaches typically used in the synthesis of intergrowths. Finally, we propose potential OSDAs to obtain hypothesized disordered frameworks such as AEI/SAV. This work may accelerate zeolite discovery through data-driven synthesis optimization and design.

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1114
Shih-Cheng Li ◽  
Yen-Chun Lin ◽  
Yi-Pei Li

Porous zeolite catalysts have been widely used in the industry for the conversion of fuel-range molecules for decades. They have the advantages of higher surface area, better hydrothermal stability, and superior shape selectivity, which make them ideal catalysts for hydrocarbon cracking in the petrochemical industry. However, the catalytic activity and selectivity of zeolites for hydrocarbon cracking are significantly affected by the zeolite topology and composition. The aim of this review is to survey recent investigations on hydrocarbon cracking and secondary reactions in micro- and mesoporous zeolites, with the emphasis on the studies of the effects of different porous environments and active site structures on alkane adsorption and activation at the molecular level. The pros and cons of different computational methods used for zeolite simulations are also discussed in this review.

Fuel ◽  
2021 ◽  
Vol 300 ◽  
pp. 120694
Fengjiao Yi ◽  
Huimin Chen ◽  
Lihua Huang ◽  
Caixia Hu ◽  
Jun Wang ◽  

Zoltán Juvancz ◽  
Rita Bodáné-Kendrovics ◽  
Lajos Szente ◽  
Dóra Maklári

This review paper shows the dominant role of the cyclodextrins in the chiral separations using capillary columns (GC, SFC, CE). The cyclodextrins (CDs) have extremely broad chiral selectivity spectra because they have several different chiral recognition sites in various arrangements and various interaction modes. Their chiral selectivity features can further improve with their various substitutions. Their selectivities are moderate therefore they need high efficiency separations (capillary columns) for good chiral resolutions. The shape selectivity of cyclodextrins is also shown with non-chiral isomers too. The utility of the cyclodextrins is demonstrated with several examples based on the personal observations of authors and critical review of literature. The theoretical backgrounds of their chiral recognitions (e.g. H-bond interaction, inclusion, induced fit) are discussed in depth. This paper is not application oriented but is dealing with mostly on the physical and chemical background of separations using CDs.

2021 ◽  
Vol 9 ◽  
Tao Zhu ◽  
Yiwei Han ◽  
Shuai Liu ◽  
Bo Yuan ◽  
Yatao Liu ◽  

In recent years, single-atom catalysts (SACs) have received extensive attention due to their unique structure and excellent performance. Currently, a variety of porous materials are used as confined single-atom catalysts, such as zeolites, metal-organic frameworks (MOFs), or carbon nitride (CN). The support plays a key role in determining the coordination structure of the catalytic metal center and its catalytic performance. For example, the strong interaction between the metal and the carrier induces the charge transfer between the metal and the carrier, and ultimately affects the catalytic behavior of the single-atom catalyst. Porous materials have unique chemical and physical properties including high specific surface area, adjustable acidity and shape selectivity (such as zeolites), and are rational support materials for confined single atoms, which arouse research interest in this field. This review surveys the latest research progress of confined single-atom catalysts for porous materials, which mainly include zeolites, CN and MOFs. The preparation methods, characterizations, application fields, and the interaction between metal atoms and porous support materials of porous material confined single-atom catalysts are discussed. And we prospect for the application prospects and challenges of porous material confined single-atom catalysts.

Sign in / Sign up

Export Citation Format

Share Document