scholarly journals Amplification and Linear Summation of Synaptic Effects on Motoneuron Firing Rate

2001 ◽  
Vol 85 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Jonathan F. Prather ◽  
Randall K. Powers ◽  
Timothy C. Cope

The aim of this study was to measure the effects of synaptic input on motoneuron firing rate in an unanesthetized cat preparation, where activation of voltage-sensitive dendritic conductances may influence synaptic integration and repetitive firing. In anesthetized cats, the change in firing rate produced by a steady synaptic input is approximately equal to the product of the effective synaptic current measured at the resting potential ( I N) and the slope of the linear relation between somatically injected current and motoneuron discharge rate ( f-I slope). However, previous studies in the unanesthetized decerebrate cat indicate that firing rate modulation may be strongly influenced by voltage-dependent dendritic conductances. To quantify the effects of these conductances on motoneuron firing behavior, we injected suprathreshold current steps into medial gastrocnemius motoneurons of decerebrate cats and measured the changes in firing rate produced by superimposed excitatory synaptic input. In the same cells, we measured I N and the f-I slope to determine the predicted change in firing rate (Δ F = I N * f-I slope). In contrast to previous results in anesthetized cats, synaptically induced changes in motoneuron firing rate were greater-than-predicted. This enhanced effect indicates that additional inward current was present during repetitive firing. This additional inward current amplified the effective synaptic currents produced by two different excitatory sources, group Ia muscle spindle afferents and caudal cutaneous sural nerve afferents. There was a trend toward more prevalent amplification of the Ia input (14/16 cells) than the sural input (11/16 cells). However, in those cells where both inputs were amplified (10/16 cells), amplification was similar in magnitude for each source. When these two synaptic inputs were simultaneously activated, their combined effect was generally very close to the linear sum of their amplified individual effects. Linear summation is also observed in medial gastrocnemius motoneurons of anesthetized cats, where amplification is not present. This similarity suggests that amplification does not disturb the processes of synaptic integration. Linear summation of amplified input was evident for the two segmental inputs studied here. If these phenomena also hold for other synaptic sources, then the presence of active dendritic conductances underlying amplification might enable motoneurons to integrate multiple synaptic inputs and drive motoneuron firing rates throughout the entire physiological range in a relatively simple fashion.

2000 ◽  
Vol 83 (1) ◽  
pp. 483-500 ◽  
Author(s):  
Randall K. Powers ◽  
Marc D. Binder

The aim of this study was to examine how cat spinal motoneurons integrate the synaptic currents generated by the concurrent activation of large groups of presynaptic neurons. We obtained intracellular recordings from cat triceps surae motoneurons and measured the effects of repetitive activity in different sets of presynaptic neurons produced by electrical stimulation of descending fibers or peripheral nerves and by longitudinal vibration of the triceps surae muscles (to activate primary muscle spindle Ia afferent fibers). We combined synaptic activation with subthreshold injected currents to obtain estimates of effective synaptic currents at the resting potential ( I Nrest) and at the threshold for repetitive discharge ( I Nthresh). We then superimposed synaptic activation on suprathreshold injected current steps to measure the synaptically evoked change in firing rate. We studied eight different pairs of synaptic inputs. When any two synaptic inputs were activated concurrently, both the effective synaptic currents ( I Nrest) and the synaptically evoked changes in firing rate generally were equal to or slightly less than the linear sum of the effects produced by activating each input alone. However, there were several instances in which the summation was substantially less than linear. In some motoneurons, we induced a partial blockade of potassium channels by adding tetraethylammonium (TEA) or cesium to the electrolyte solution in the intracellular pipette. In these cells, persistent inward currents were evoked by depolarization that led to instances of substantially greater-than linear summation of injected and synaptic currents. Overall our results indicate that the spatial distribution of synaptic boutons on motoneurons acts to minimize electrical interactions between synaptic sites permitting near linear summation of synaptic currents. However, modulation of voltage-gated conductances on the soma and dendrites of the motoneuron can lead to marked nonlinearities in synaptic integration.


1993 ◽  
Vol 70 (5) ◽  
pp. 1827-1840 ◽  
Author(s):  
C. J. Heckman ◽  
M. D. Binder

1. The effects of four different synaptic input systems on the recruitment order within a mammalian motoneuron pool were investigated using computer simulations. The synaptic inputs and motor unit properties in the model were based as closely as possible on the available experimental data for the cat medial gastrocnemius pool and muscle. Monte Carlo techniques were employed to add random variance to the motor unit thresholds and forces and to sample the resulting recruitment orders. 2. The effects of the synaptic inputs on recruitment order depended on how they modified the range of recruitment thresholds established by differences in the intrinsic current thresholds of the motoneurons. Application of a uniform synaptic input to the pool (i.e., distributed equally to all motoneurons) resulted in a recruitment sequence that was quite stable even with the addition of large amounts of random variance. With 50% added random variance, the recruitment reversals did not exceed 8%. 3. The simulated monosynaptic input from homonymous Ia afferent fibers generated a twofold expansion of the range of recruitment thresholds beyond that attributed to the differences in the intrinsic current thresholds. The Ia input generated a small reduction in the number of recruitment reversals due to random variance (6% reversals at 50% random variance). The simulated monosynaptic vestibulospinal input generated a twofold compression of the range of recruitment thresholds that exerted a modest increase in the number of recruitment reversals (12% reversals at 50% random variance). 4. In comparison with the modest effects of the two monosynaptic inputs, the simulated oligosynpatic rubrospinal excitatory input exerted a nine-fold compression in the recruitment threshold range that resulted in a recruitment sequence that was highly sensitive to random variance. With 50% added random variance, the sequence became nearly random (40% reversals). 5. Reciprocal Ia inhibition was simulated by a uniform distribution within the pool, but its effects on recruitment order were highly dependent on the distribution of the excitatory input. Reciprocal inhibition exerted only minor effects on recruitment order when combined with the Ia or vestibulospinal inputs. However, when the excitatory drive was supplied by the rubrospinal input, even small amounts of reciprocal inhibition were sufficient to completely reverse the normal recruitment sequence. 6. The simulated monosynaptic Ia input was highly effective in compensating for the disruptive effects of rubrospinal excitation on recruitment order. Even a small Ia bias combined with the rubrospinal excitation was sufficient to halve the effects of random variance and to restore the normal recruitment sequence in the presence of rather large amounts of reciprocal inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 61 (2) ◽  
pp. 245-256 ◽  
Author(s):  
R. C. Foehring ◽  
P. C. Schwindt ◽  
W. E. Crill

1. The effects of norepinephrine (NE) and related agonists and antagonists were examined on large neurons from layer V of cat sensorimotor cortex ("Betz cells") were examined in a brain slice preparation using intracellular recording, constant current stimulation and single microelectrode voltage clamp. 2. Application of NE (0.1-100 microM) usually caused a small depolarization from resting potential; hyperpolarizations were rare. Application of NE reversibly reduced rheobase and both the Ca2+- and Na+-dependent portions of the slow afterhyperpolarization (sAHP) that followed sustained firing evoked by constant current injection. The faster Ca2+-dependent medium afterhyperpolarization (mAHP), the fast afterhyperpolarization (fAHP), the action potential, and input resistance were unaffected. 3. The changes in excitability produced by NE application were most apparent during prolonged stimulation. The cells exhibited steady repetitive firing to currents that were formerly ineffective. The slow phase of spike frequency adaptation was reduced selectively and less habituation occurred during repeated long-lasting stimuli. The relation between firing rate and injected current became steeper if firing rate was averaged over several hundred milliseconds. 4. During voltage clamp in TTX, NE application selectively reduced the slow component of Ca2+-mediated K+ current. The faster Ca2+-mediated K+ current was unaffected, as were two voltage-dependent, transient K+ currents, the anomalous rectifier and leakage conductance measured at resting potential. Depolarizing voltage steps in the presence of Cd2+ revealed an apparent time- and voltage-dependent increase of the persistent Na+ current after NE application. The voltage-clamp results suggested ionic mechanisms for all effects seen during constant current stimulation except the depolarization from resting potential. The latter was insensitive to Cd2+ and TTX and occurred without a detectable change in membrane conductance. 5. NE application did not alter Ca2+ spikes evoked in the presence of TTX and 10 mM TEA. Inward Ca2+ currents examined during voltage clamp in TTX (with K+ currents reduced) became slightly larger after NE application. We conclude that NEs reduction of the slow Ca2+-mediated K+ current is not caused by reduction of Ca2+ influx. 6. Effects on membrane potential, rheobase, and the sAHP were mimicked by the beta-adrenergic agonist isoproterenol, but not by the alpha-adrenergic agonists clonidine or phenylephrine at higher concentrations.(ABSTRACT TRUNCATED AT 400 WORDS)


2017 ◽  
Vol 29 (7) ◽  
pp. 1745-1768 ◽  
Author(s):  
Paolo Puggioni ◽  
Marta Jelitai ◽  
Ian Duguid ◽  
Mark C.W. van Rossum

Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, in vivo, the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show here that it is nevertheless possible to extract the properties of the events and, in particular, to extract the event rate, the synaptic time constants, and the properties of the event size distribution from in vivo voltage-clamp recordings. Applied to cerebellar interneurons, our method reveals that the synaptic input rate increases from 600 Hz during rest to 1000 Hz during locomotion, while the amplitude and shape of the synaptic events are unaffected by this state change. This method thus complements existing methods to measure neural function in vivo.


1984 ◽  
Vol 113 (1) ◽  
pp. 289-321 ◽  
Author(s):  
I. M. Cooke ◽  
B. A. Haylett

Secretion of the octapeptide erythrophore- (red pigment-) concentrating hormone (ECH, RPCH) and extracellularly monitored electrical activity were followed simultaneously from individual, isolated sinus glands (neurohaemal organs), of the crab Cardisoma carnifex. Following introduction of saline having elevated [K], 100–196 mmol l-1 (5–11 X normal), secretion (bioassayed from 1-min fractions during continuous perfusion) increases from barely detectable (less than 1 fmol min-1) to a peak, average 31 fmol min-1, within 5 min, and immediately subsides. Additional responses are obtainable following a period, greater than 30 min, of normal saline perfusion. Secretory responses to K are Ca-dependent. If Ca is restored (in high K) following perfusion in 0-Ca, high K, only a small secretory response is observed. Addition of Mn (10 mmol l-1, normal Ca) reduces secretion to one-tenth. Increased net uptake of 45Ca of 2.5- to 6-fold is observed in individual sinus glands exposed to 10 X K compared to paired, unstimulated organs. The pattern and Ca-dependence of secretory responses to K are unaffected, but the amount of secretion is augmented in Na-deficient or TTX-containing salines. Intracellular recording confirms that brief (10–40 s) bouts of intense firing recorded extracellularly upon commencing a high K perfusion include repetitive firing by terminals, superimposed on rapid depolarization. Firing ceases as the membrane potential reaches a depolarized value (−18 to −15 mV for [K] 100–176 mmol l-1), which is then maintained until restoration of normal saline, when slow repolarization ensues. In 0-Ca, spontaneous impulse firing is increased, resting potential depolarized by 5 to 15 mV, but the bout of impulse firing and the maintained depolarization in response to K are similar. Thus, mechanisms of secretion of a crustacean peptide neurohormone appear closely similar to those of other systems characterized: responsiveness to elevated K, dependence on Ca, depolarization-, but not secretion-dependent inactivation, and lack of dependence on Na inward current. Intracellular recording here permits direct observation of electrical responses of terminals.


2017 ◽  
Vol 117 (3) ◽  
pp. 1171-1184 ◽  
Author(s):  
Randall K. Powers ◽  
Charles J. Heckman

Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs.


1995 ◽  
Vol 74 (2) ◽  
pp. 793-801 ◽  
Author(s):  
R. K. Powers ◽  
M. D. Binder

1. We used a modified voltage-clamp technique to measure the steady-state effective synaptic currents (I(N)) produced by activating four different input systems to cat hindlimb motoneurons: Ia afferent fibers, Ia-inhibitory interneurons, Renshaw interneurons, and contralateral rubrospinal neurons. In the same motoneurons, we measured the slope of the firing rate-injected current (f-I) relation in the primary range. We then reactivated these synaptic inputs during steady, repetitive firing to assess their effects on motoneuron discharge rate. 2. Our measurements of I(N) were derived from recordings made near the resting membrane potential, whereas the effects of the synaptic inputs on repetitive discharge were evaluated at more depolarized membrane potentials. Thus we adjusted the I(N) values for these changes in driving force based on estimates of the synaptic reversal potential and the mean membrane potential during repetitive discharge. 3. We found that changes in the steady-state discharge rate of a motoneuron produced by these synaptic inputs could be reasonably well predicted by the product of the estimated value of I(N) during repetitive firing and the slope of the motoneuron's f-I relation. Although there was a high correlation between predicted and observed changes in firing rate for our entire sample of motoneurons (r = 0.93; P < 0.001), the slope of the relation between predicted and observed firing rate modulation was significantly greater than 1. 4. The systematic difference between predicted and observed firing rate modulation observed in the overall sample was primarily due to the fact that our predictions underestimated the changes in firing rate produced by Ia excitation and Ia inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 60 (6) ◽  
pp. 1946-1966 ◽  
Author(s):  
C. J. Heckman ◽  
M. D. Binder

1. We have developed a technique to measure the total amount of current from a synaptic input system that reaches the soma of a motoneuron under steady-state conditions. We refer to this quantity as the effective synaptic current (IN) because only that fraction of the synaptic current that actually reaches the soma and initial segment of the cell affects its recruitment threshold and firing frequency. 2. The advantage of this technique for analysis of synaptic inputs in comparison to the standard measurements of synaptic potentials is apparent from Ohm's law. Steady-state synaptic potentials recorded at the soma of a cell are the product of IN and input resistance (RN), which is determined by intrinsic cellular properties such as cell size and membrane resistivity. Measuring IN avoids the confounding effect of RN on the amplitudes of synaptic potentials and thus provides a more direct assessment of the magnitude of a synaptic input. 3. Steady-state synaptic inputs were generated in cat medial gastrocnemius (MG) motoneurons by using tendon vibration to activate homonymous Ia afferents. We found that the magnitude of the Ia effective synaptic current (Ia IN) was not the same in all MG cells. Instead, Ia IN covaried with RN (r = 0.64; P less than 0.001), being about twice as large on average in motoneurons with high RN values as in those with low RN values. Ia IN was also correlated with motoneuron rheobase, afterhyperpolarization duration, and axonal conduction velocity. 4. A comparison of transient Ia EPSPs with steady-state Ia EPSPs (Ia EPSPSS) evoked in the same cells suggested that the effective synaptic current that produces the transient Ia EPSP was also greater in motoneurons with high RN values than in those with low RN values. 5. The factors responsible for the Ia IN-RN covariance are uncertain. However, our finding greater values of Ia IN in high RN motoneurons is consistent with other evidence suggesting that Ia boutons on these motoneurons have a higher probability for neurotransmitter release than those on low RN motoneurons (19). 6. The neural mechanisms underlying orderly recruitment are discussed. The effect of the Ia input is to produce an approximately twofold expansion of the differences in motoneuron recruitment thresholds that are generated by intrinsic cellular properties. It is suggested that the higher efficacy of Ia input in low-threshold motoneurons confers particular importance on this input system in the control of vernier movements (7).


1996 ◽  
Vol 75 (5) ◽  
pp. 1997-2004 ◽  
Author(s):  
S. M. Dacko ◽  
A. J. Sokoloff ◽  
T. C. Cope

1. We tested the hypothesis that reflex inhibition of soleus motor units reflects selective inhibition of slow-twitch (type S) motor units throughout the triceps surae. Physiological properties including type, together with firing behavior, were measured from single motor units in the medial gastrocnemius (MG) muscle of decerebrate cats with the use of intra-axonal recording and stimulation. MG unit firing was contrasted during net inhibition or excitation of the slow-twitch soleus muscle produced by ramp-hold-release stretches of MG. 2. Stretch of the MG muscle increased the firing of type S motor units in the MG regardless of the reflex response of the soleus muscle. When stretch inhibited soleus, each of the 14 type S units sampled from MG either was newly recruited or exhibited increases in the rate of ongoing firing. Increased firing was observed in 320 of 321 stretch trials. For 8 of these 14 units, a total of 155 stretch trials evoked reflex excitation of soleus, and unit firing increased in all trials. 3. For the eight MG type S motor units studied during both reflex inhibition and excitation of soleus, firing rate tended to be higher during inhibition. The higher rates were also associated with the higher MG forces required to elicit soleus inhibition. For one MG type S unit it was possible to compare firing rates during soleus inhibition and excitation for trials of overlapping levels of MG force. For this unit, firing rate was similar, but still appreciably higher, during inhibition. 4. Soleus inhibition was also produced by stretch of the plantaris (PL) or lateral gastrocnemius (LG) muscles. Type S units in PL (n = 2) or in LG (n = 1) were recruited or increased firing rate even when stretch of these muscles produced soleus inhibition. 5. The firing behavior of 12 fast-twitch (type F) units was studied (11 from MG, 1 from PL). All type F units either were recruited or accelerated the rate of firing during soleus inhibition, as well as during soleus excitation. 6. These findings give evidence that reflex inhibition of type S motor units in the soleus muscle does not necessarily reflect an organizational scheme in which there is inactivation of type S units in other active muscles. In the DISCUSSION we point out the absence of direct evidence for selective inactivation of units on the basis of their type classification.


1979 ◽  
Vol 42 (5) ◽  
pp. 1233-1250 ◽  
Author(s):  
J. H. Byrne ◽  
E. Shapiro ◽  
N. Dieringer ◽  
J. Koester

1. The release of ink from the ink gland of Aplysia californica in response to noxious stimuli is mediated by three electrically coupled motor neurons, L14A, L14B, L14C, whose cell bodies are located in the abdominal ganglion. The initial synaptic input to the ink motor neurons is relatively ineffective in firing the cells. As a result, a pause of 1--3 s often occurs before the cells attain their maximum firing frequency and cause the release of ink. Using current and voltage-clamp techniques we have analyzed the mechanisms underlying the firing pattern of these cells. 2. The presence of a fast transient K+ current appears to play an important role in mediating the firing pattern of the ink motor neurons. Their high resting potential (-75 mV) ensures that the steady-state level of inactivation of the conductance channels for the fast K+ current will normally be low. Thus a train of EPSPs or a depolarizing current pulse can activate this current maximally, thereby reducing the initial effectiveness of the excitatory input. 3. In addition to the fast transient K+ current, four other currents were identified: 1) a fast transient tetrodotoxin-sensitive inward current, presumed to be carried by Na+; 2) a slower tetrodotoxin-insensitive inward current, presumed to be carried by Ca2+; 3) a slow transient outward tetraethylammonium- (TEA) sensitive current; and 4) a very slow TEA-insensitive outward current. 4. A decreased conductance EPSP, which turns on over a several-second period, contributes to a late acceleration of spike discharge in the L14 cells. 5. The results suggest that a unique combination of biophysical properties of the L14 cells and the features of the synaptic input cause them to act as a low-pass filter in the reflex pathway for inking.Their high resting potential, which ensures minimal inactivation of the fast transient K+ current channel, makes these cells preferentially responsive to strong and long-lasting stimuli. The delayed recruitment of a decreased conductance EPSP augments the tendency of the L14 cells to fire in an accelerating burst pattern.


Sign in / Sign up

Export Citation Format

Share Document