Characterization of the mGluR1-Mediated Electrical and Calcium Signaling in Purkinje Cells of Mouse Cerebellar Slices

2001 ◽  
Vol 86 (3) ◽  
pp. 1389-1397 ◽  
Author(s):  
F. Tempia ◽  
M. E. Alojado ◽  
P. Strata ◽  
T. Knöpfel

The metabotropic glutamate receptor 1 (mGluR1) plays a fundamental role in postnatal development and plasticity of ionotropic glutamate receptor-mediated synaptic excitation of cerebellar Purkinje cells. Synaptic activation of mGluR1 by brief tetanic stimulation of parallel fibers evokes a slow excitatory postsynaptic current and an elevation of intracellular calcium concentration ([Ca2+]i) in Purkinje cells. The mechanism underlying these responses has not been identified yet. Here we investigated the responses to synaptic and direct activation of mGluR1 using whole cell patch-clamp recordings in combination with microfluorometric measurements of [Ca2+]i in mouse Purkinje cells. Following pharmacological block of ionotropic glutamate receptors, two to six stimuli applied to parallel fibers at 100 Hz evoked a slow inward current that was associated with an elevation of [Ca2+]i. Both the inward current and the rise in [Ca2+]i increased in size with increasing number of pulses albeit with no clear difference between the minimal number of pulses required to evoke these responses. Application of the mGluR1 agonist ( S)-3,5-dihydroxyphenylglycine (3,5-DHPG) by means of short-lasting (5–100 ms) pressure pulses delivered through an agonist-containing pipette positioned over the Purkinje cell dendrite, evoked responses resembling the synaptically induced inward current and elevation of [Ca2+]i. No increase in [Ca2+]i was observed with inward currents of comparable amplitudes induced by the ionotropic glutamate receptor agonist AMPA. The 3,5-DHPG-induced inward current but not the associated increase in [Ca2+]i was depressed when extracellular Na+ was replaced by choline, but, surprisingly, both responses were also depressed when bathing the tissue in a low calcium (0.125 mM) or calcium-free/EGTA solution. Thapsigargin (10 μM) and cyclopiazonic acid (30 μM), inhibitors of sarco-endoplasmic reticulum Ca2+-ATPase, had little effect on either the inward current or the elevation in [Ca2+]i induced by 3,5-DHPG. Furthermore, the inward current induced by 3,5-DHPG was neither blocked by 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy] ethyl-1H-imidazole, an inhibitor of store operated calcium influx, nor by nimodipine or omega-agatoxin, blockers of voltage-gated calcium channels. These electrophysiological and Ca2+-imaging experiments suggest that the mGluR1-mediated inward current, although mainly carried by Na+, involves influx of Ca2+ from the extracellular space.

1996 ◽  
Vol 76 (5) ◽  
pp. 3578-3583 ◽  
Author(s):  
A. Jeromin ◽  
R. L. Huganir ◽  
D. J. Linden

1. The role of the glutamate receptor subunit delta 2 in the induction of cerebellar long-term depression (LTD) was investigated by application of antisense oligonucleotides. The delta 2 subunit is selectively localized to Purkinje cells (PCs), with the highest levels being in the PC dendritic spines, where parallel fibers are received and where cerebellar LTD is expressed. 2. Immunocytochemical analysis of calbindin-positive PCs revealed that both the dendritic and somatic expression of delta 2 was reduced in antisense-but not in sense-treated cultures. An antisense oligonucleotide directed against the related subunit delta 1 did not affect the expression of delta 2 in PCs. 3. Cerebellar LTD may be reliably induced in a preparation of cultured embryonic cerebellar neurons from the mouse when parallel and climbing fiber stimulation are replaced by brief glutamate pulses and strong, direct depolarization of the PC, respectively. Application of an antisense oligonucleotide directed against delta 2 completely blocked the induction of LTD produced by glutamate/ depolarization conjunctive stimulation. A delta 2 sense oligonucleotide or an antisense oligonucleotide directed against the related delta 1 subunit had no effect. 4. The effect of the delta 2 antisense oligonucleotide was not related to attenuation of calcium influx via voltage-gated channels or calcium mobilization via metabotropic glutamate receptors, as assessed with fura-2 microfluorimetry. Current flow through alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-receptor-associated ion channels also appeared unaltered. All three of these processes have previously been shown to be required for cerebellar LTD induction. The observation that delta 2 is involved in a metabotropic-glutamate-receptor-independent signaling pathway that is required for LTD induction supports the view that delta 2 participates in the formation of a novel postsynaptic receptor complex.


1996 ◽  
Vol 76 (3) ◽  
pp. 1545-1558 ◽  
Author(s):  
Y. Takeshita ◽  
N. Harata ◽  
N. Akaike

1. Responses to metabotropic glutamate receptor (mGluR) activation were investigated in acutely dissociated rat neostriatal (caudate putamen, CP) large cholinergic neurons, with the use of a nystatin-perforated patch-clamp technique. 2. Application of L-glutamate (Glu) in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) induced a slow inward current accompanied by a decrease in membrane conductance at a holding potential (VH) of -44 mV. 3. The ratio of the maximal amplitude of the slow inward metabotropic glutamate (mGlu) response to that of the ionotropic glutamate response for large cholinergic CP neurons was larger than that for the hoppocampal CA1, CA3, and dentate gyrus neurons the nucleus tractus solitarii neuron, cerebellar Purkinje neuron, and granule cell of the main olfactory bulb. The threshold and half-maximal effective concentration values of these mGlu responses were 10- to 30-fold lower than those of the respective ionotropic responses. 4. Specific agonists of the mGluR, quisqualate (QA), (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (tACPD), (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD], and (2S,3S,4S)-alpha-carboxycyclopropyl-glycine [L-CCG-1), similarly induced slow inward currents at the same VH. The relative affinities of the mGlu agonists were QA > Glu > L-CCG-1 > (1S,3R)-ACPD. L-CCG-1 did not induce any current at concentrations < 10(-6) M. 5. DL-2-amino-3-phosphonopropionic acid or DL-2-amino-4-phosphonobutyric acid did not block the mGlu response, whereas (RS)-alpha-methyl-4-carboxyphenyl-glycine, a selective mGluR antagonist, partially reduced the mGlu response. 6. The reversal potential of the mGlu response was close to the K+ equilibrium potential, and it shifted by 56.4 mV for a 10-fold change in extracellular K+ concentration. In 90.6% of the neurons tested, the instantaneous current induced by hyperpolarizing voltage steps was markedly suppressed during the mGlu response. In 9.4% of the neurons, the currents elicited by step pulses showed a voltage-dependent slow relaxation that was not affected by mGluR activation. 7. Under the current-clamp mode, the slow afterhyperpolarization (AHP) following a spontaneous discharge was not affected by tACPD. The AHP current was not blocked under the voltage-clamp mode, either. 8. (1S,3R)-ACPD or Glu in the presence of CNQX elicited membrane depolarization accompanied by increased rate of action potentials under the current-clamp mode. Tetrodotoxin had no effect on the membrane depolarization. 9. These results indicate that the mGluR on large cholinergic CP neurons is mainly of the mGluR1 and/or mGluR5 type, and it plays a significant role in controlling the membrane potential by way of suppressing the leak K+ conductance.


Sign in / Sign up

Export Citation Format

Share Document